F范数 低秩矩阵近似高秩矩阵

F范数定义

∥ A ∥ = ∑ m , n = 1 , 1 M , N a m , n 2 \|A\|=\sqrt{\sum_{m,n=1,1}^{M, N}a_{m,n}^2} A=m,n=1,1M,Nam,n2

SVD-singular value decomposition

A A A is a m × n m\times n m×n matrix.
A = U Σ V ∗ = U [ Σ k 0 0 0 ] V ∗ A=U\Sigma V^*=U\begin{bmatrix} \Sigma_k&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^* A=UΣV=U[Σk000]V
k k k is the rank of A A A.
Then we have:
∥ A ∥ = ∥ U Σ V ∗ ∥ = T r ( ( U Σ V ∗ ) ( U Σ V ∗ ) T ) = T r ( U Σ V ∗ V Σ T U T ) = ∑ m = 1 k σ m 2 = ∥ Σ ∥ \begin{aligned} \|A\| &=\|U\Sigma V^*\|\\ &=\sqrt{Tr((U\Sigma V^*)(U\Sigma V^*)^T)}\\ &= \sqrt{Tr(U\Sigma V^*V\Sigma^TU^T)}\\&=\sqrt{\sum_{m=1}^k\sigma_m^2}=\|\Sigma\| \end{aligned} A=UΣV=Tr((UΣV)(UΣV)T) =Tr(UΣVVΣTUT) =m=1kσm2 =Σ
Now we can form a rank r ≤ k r \le k rk matrix A ^ \hat{A} A^ by setting the value δ r + 1 , ⋯   , δ k \delta_{r+1},\cdots, \delta_{k} δr+1,,δk in Σ k \Sigma_k Σk to be zero, namely:
A ^ = U [ Σ r 0 0 0 ] V ∗ \hat{A}=U\begin{bmatrix} \Sigma_r&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^* A^=U[Σr000]V
Then the Frobenius norm ε r \varepsilon_r εr of the error matrix ( A − A ^ ) (A-\hat{A}) (AA^) is given by:
ε r = ∥ ( A − A ^ ) ∥ = ∥ U ( Σ − Σ ^ ) V ∗ ) ∥ = ∥ Σ − Σ ^ ∥ = ∑ m = r + 1 k σ m 2 \begin{aligned} \varepsilon_r&=\|(A-\hat{A})\| \\ &=\| U(\Sigma-\hat{\Sigma})V^*)\| \\ &= \| \Sigma-\hat{\Sigma}\| \\&=\sqrt{\sum_{m=r+1}^k\sigma_m^2} \end{aligned} εr=(AA^)=U(ΣΣ^)V)=ΣΣ^=m=r+1kσm2
Assume B B B is already a matrix giving the minimum value of ε B \varepsilon_B εB and its singular value decomposition is given by:
B = U b Σ b V b ∗ = U b [ Σ b 0 0 0 ] V b ∗ B=U_b\Sigma_b V^*_b=U_b\begin{bmatrix} \Sigma_b&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^*_b B=UbΣbVb=Ub[Σb000]Vb
Now we define a new matrix C C C which is given by:
C = U b H A V b = [ C 11 C 12 C 21 C 22 ] \boldsymbol{C}=\boldsymbol{U}_{b}^{H} \boldsymbol{A} \boldsymbol{V}_{b}=\left[\begin{array}{cc} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} \end{array}\right] C=UbHAVb=[C11C21C12C22]

Then we have:
ε B = ∥ A − B ∥ = ∥ U b H ( A − B ) V b ∥ = ∥ C − Σ b ∥ = ∥ C 11 − Σ ^ b ∥ + ∥ C 12 ∥ + ∥ C 21 ∥ + ∥ C 22 ∥ \begin{aligned} \varepsilon_{B} &=\|\boldsymbol{A}-\boldsymbol{B}\| \\ &=\left\|\boldsymbol{U}_{b}^{H}(\boldsymbol{A}-\boldsymbol{B}) \boldsymbol{V}_{b}\right\| \\ &=\left\|\boldsymbol{C}-\boldsymbol{\Sigma}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{11}-\hat{\mathbf{\Sigma}}_{b}\right\|+\left\|\boldsymbol{C}_{12}\right\|+\left\|\boldsymbol{C}_{21}\right\|+\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB=AB=UbH(AB)Vb=CΣb=C11Σ^b+C12+C21+C22

since B \boldsymbol{B} B is already a matrix giving the minimum value of ε B , \varepsilon_{B}, εB, we must have C 12 = 0 \boldsymbol{C}_{12}=\mathbf{0} C12=0 Otherwise, we will be able to construct a new rank r r r matrix B ^ \hat{\boldsymbol{B}} B^, given by:
B ^ = U b [ Σ ^ b C 12 0 0 ] V b H \hat{\boldsymbol{B}}=\boldsymbol{U}_{b}\left[\begin{array}{cc} \hat{\boldsymbol{\Sigma}}_{b} & \boldsymbol{C}_{12} \\ \boldsymbol{0} & \boldsymbol{0} \end{array}\right] \boldsymbol{V}_{b}^{H} B^=Ub[Σ^b0C120]VbH
so that the new Frobenius norm:
ε B ^ = ∥ A − B ^ ∥ = ∥ U b H ( A − B ^ ) V b ∥ = ∥ C 11 − Σ ^ b ∥ + ∥ C 21 ∥ + ∥ C 22 ∥ \begin{aligned} \varepsilon_{\hat{B}} &=\|\boldsymbol{A}-\hat{\boldsymbol{B}}\| \\ &=\left\|\boldsymbol{U}_{b}^{H}(\boldsymbol{A}-\hat{\boldsymbol{B}}) \boldsymbol{V}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{11}-\hat{\mathbf{\Sigma}}_{b}\right\|+\left\|\boldsymbol{C}_{21}\right\|+\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB^=AB^=UbH(AB^)Vb=C11Σ^b+C21+C22
will be smaller than ε B , \varepsilon_{B}, εB, which contradicts the assumption that B B B gives the minimum value. In the same way, we have C 21 = 0 C_{21}=0 C21=0 and C 11 = Σ ^ b . C_{11}=\hat{\mathbf{\Sigma}}_{b} . C11=Σ^b. Then we have:
C = U b H A V b = [ Σ ^ b 0 0 C 22 ] \boldsymbol{C}=\boldsymbol{U}_{b}^{H} \boldsymbol{A} \boldsymbol{V}_{b}=\left[\begin{array}{cc} \hat{\boldsymbol{\Sigma}}_{b} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{22} \end{array}\right] C=UbHAVb=[Σ^b00C22]
since Σ ^ b \hat{\mathbf{\Sigma}}_{b} Σ^b is diagonal, it consists of r r r singular values of A . \boldsymbol{A} . A. We can get:
ε B = ∥ C − Σ b ∥ = ∥ C 22 ∥ \begin{aligned} \varepsilon_{B} &=\left\|\boldsymbol{C}-\boldsymbol{\Sigma}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB=CΣb=C22
since both U b U_{b} Ub and V b V_{b} Vb are unitary matrices, we have:
∥ A ∥ 2 = ∥ C ∥ 2 = ∥ Σ ^ b ∥ 2 + ∥ C 22 ∥ 2 \|\boldsymbol{A}\|^{2}=\|\boldsymbol{C}\|^{2}=\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2}+\left\|\boldsymbol{C}_{22}\right\|^{2} A2=C2=Σ^b2+C222
Then:
∥ c x ∥ 2 = ∥ A ∥ 2 − ∥ Σ ^ b ∥ 2 = ∑ m = 1 k σ m 2 − ∥ Σ ^ b ∥ 2 \begin{aligned} \left\|c_{x}\right\|^{2} &=\|A\|^{2}-\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2}\\ &=\sum_{m=1}^{k} \sigma_{m}^{2}-\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2} \end{aligned} cx2=A2Σ^b2=m=1kσm2Σ^b2
Obviously, when Σ ^ b \hat{\mathbf{\Sigma}}_{b} Σ^b holds the r r r largest singular values σ 1 , … , σ r \sigma_{1}, \ldots, \sigma_{r} σ1,,σr of the matrix A \boldsymbol{A} A ∥ C 22 ∥ 2 \left\|\boldsymbol{C}_{22}\right\|^{2} C222 and then ε B \varepsilon_{B} εB reaches its minimum value:
ε B 2 = ∣ C 22 ∣ ∣ 2 = ∑ m = r + 1 k σ m 2 = ε r 2 \varepsilon_{B}^{2}=\left.\left|\boldsymbol{C}_{22}\right|\right|^{2}=\sum_{m=r+1}^{k} \sigma_{m}^{2}=\varepsilon_{r}^{2} εB2=C222=m=r+1kσm2=εr2
Therefore, we can draw the conclusion that A ^ \hat{A} A^ is the best rank r r r approximation to A A A based on minimisation of the error matrix’ Frobenius norm ∥ A − B ∥ \|\boldsymbol{A}-\boldsymbol{B}\| AB

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
矩阵恢复算法是一类用于从部分观测数据中恢复完整矩阵的算法。矩阵恢复在许多领域中都有广泛的应用,如图像处理、视频压缩、信号处理等。 综述这一领域的算法非常庞大,我将为你简要介绍几种常见的矩阵恢复算法: 1. 矩阵补全算法(Matrix Completion):基于矩阵补全的算法通过最小化矩阵或核范数来恢复矩阵。其中,核范数被广泛应用于补全矩阵的目标函数中,例如基于核范数矩阵补全(RPCA)算法。 2. 基于凸优化的方法:凸优化方法利用了矩阵恢复问题的凸性质,通过最小化一个带有约束的目标函数来恢复矩阵。例如,使用核范数作为凸优化目标函数的代理,然后通过求解核近似或核替代问题来实现矩阵恢复。 3. 迭代阈值算法:迭代阈值算法是一类基于迭代优化的方法,通过交替最小化的策略,迭代地更新矩阵或核范数。典型的算法有奇异值软阈值算法(SVT)、交替方向乘子法(ADM)等。 4. 基于稀疏表示的方法:基于稀疏表示的方法假设矩阵可以通过少量列向量的线性组合来表示,进而通过求解稀疏表示问题来恢复矩阵。例如,利用稀疏表示和字典学习的矩阵恢复(LRMR)算法。 需要注意的是,不同的矩阵恢复算法在性能和复杂度上可能存在差异,适用于不同场景。因此,在具体应用中,需要根据问题的特征选择适合的算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值