F范数 低秩矩阵近似高秩矩阵

F范数定义

∥ A ∥ = ∑ m , n = 1 , 1 M , N a m , n 2 \|A\|=\sqrt{\sum_{m,n=1,1}^{M, N}a_{m,n}^2} A=m,n=1,1M,Nam,n2

SVD-singular value decomposition

A A A is a m × n m\times n m×n matrix.
A = U Σ V ∗ = U [ Σ k 0 0 0 ] V ∗ A=U\Sigma V^*=U\begin{bmatrix} \Sigma_k&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^* A=UΣV=U[Σk000]V
k k k is the rank of A A A.
Then we have:
∥ A ∥ = ∥ U Σ V ∗ ∥ = T r ( ( U Σ V ∗ ) ( U Σ V ∗ ) T ) = T r ( U Σ V ∗ V Σ T U T ) = ∑ m = 1 k σ m 2 = ∥ Σ ∥ \begin{aligned} \|A\| &=\|U\Sigma V^*\|\\ &=\sqrt{Tr((U\Sigma V^*)(U\Sigma V^*)^T)}\\ &= \sqrt{Tr(U\Sigma V^*V\Sigma^TU^T)}\\&=\sqrt{\sum_{m=1}^k\sigma_m^2}=\|\Sigma\| \end{aligned} A=UΣV=Tr((UΣV)(UΣV)T) =Tr(UΣVVΣTUT) =m=1kσm2 =Σ
Now we can form a rank r ≤ k r \le k rk matrix A ^ \hat{A} A^ by setting the value δ r + 1 , ⋯   , δ k \delta_{r+1},\cdots, \delta_{k} δr+1,,δk in Σ k \Sigma_k Σk to be zero, namely:
A ^ = U [ Σ r 0 0 0 ] V ∗ \hat{A}=U\begin{bmatrix} \Sigma_r&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^* A^=U[Σr000]V
Then the Frobenius norm ε r \varepsilon_r εr of the error matrix ( A − A ^ ) (A-\hat{A}) (AA^) is given by:
ε r = ∥ ( A − A ^ ) ∥ = ∥ U ( Σ − Σ ^ ) V ∗ ) ∥ = ∥ Σ − Σ ^ ∥ = ∑ m = r + 1 k σ m 2 \begin{aligned} \varepsilon_r&=\|(A-\hat{A})\| \\ &=\| U(\Sigma-\hat{\Sigma})V^*)\| \\ &= \| \Sigma-\hat{\Sigma}\| \\&=\sqrt{\sum_{m=r+1}^k\sigma_m^2} \end{aligned} εr=(AA^)=U(ΣΣ^)V)=ΣΣ^=m=r+1kσm2
Assume B B B is already a matrix giving the minimum value of ε B \varepsilon_B εB and its singular value decomposition is given by:
B = U b Σ b V b ∗ = U b [ Σ b 0 0 0 ] V b ∗ B=U_b\Sigma_b V^*_b=U_b\begin{bmatrix} \Sigma_b&\mathbf{0} \\\mathbf{0}&\mathbf{0} \end{bmatrix}V^*_b B=UbΣbVb=Ub[Σb000]Vb
Now we define a new matrix C C C which is given by:
C = U b H A V b = [ C 11 C 12 C 21 C 22 ] \boldsymbol{C}=\boldsymbol{U}_{b}^{H} \boldsymbol{A} \boldsymbol{V}_{b}=\left[\begin{array}{cc} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} \end{array}\right] C=UbHAVb=[C11C21C12C22]

Then we have:
ε B = ∥ A − B ∥ = ∥ U b H ( A − B ) V b ∥ = ∥ C − Σ b ∥ = ∥ C 11 − Σ ^ b ∥ + ∥ C 12 ∥ + ∥ C 21 ∥ + ∥ C 22 ∥ \begin{aligned} \varepsilon_{B} &=\|\boldsymbol{A}-\boldsymbol{B}\| \\ &=\left\|\boldsymbol{U}_{b}^{H}(\boldsymbol{A}-\boldsymbol{B}) \boldsymbol{V}_{b}\right\| \\ &=\left\|\boldsymbol{C}-\boldsymbol{\Sigma}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{11}-\hat{\mathbf{\Sigma}}_{b}\right\|+\left\|\boldsymbol{C}_{12}\right\|+\left\|\boldsymbol{C}_{21}\right\|+\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB=AB=UbH(AB)Vb=CΣb=C11Σ^b+C12+C21+C22

since B \boldsymbol{B} B is already a matrix giving the minimum value of ε B , \varepsilon_{B}, εB, we must have C 12 = 0 \boldsymbol{C}_{12}=\mathbf{0} C12=0 Otherwise, we will be able to construct a new rank r r r matrix B ^ \hat{\boldsymbol{B}} B^, given by:
B ^ = U b [ Σ ^ b C 12 0 0 ] V b H \hat{\boldsymbol{B}}=\boldsymbol{U}_{b}\left[\begin{array}{cc} \hat{\boldsymbol{\Sigma}}_{b} & \boldsymbol{C}_{12} \\ \boldsymbol{0} & \boldsymbol{0} \end{array}\right] \boldsymbol{V}_{b}^{H} B^=Ub[Σ^b0C120]VbH
so that the new Frobenius norm:
ε B ^ = ∥ A − B ^ ∥ = ∥ U b H ( A − B ^ ) V b ∥ = ∥ C 11 − Σ ^ b ∥ + ∥ C 21 ∥ + ∥ C 22 ∥ \begin{aligned} \varepsilon_{\hat{B}} &=\|\boldsymbol{A}-\hat{\boldsymbol{B}}\| \\ &=\left\|\boldsymbol{U}_{b}^{H}(\boldsymbol{A}-\hat{\boldsymbol{B}}) \boldsymbol{V}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{11}-\hat{\mathbf{\Sigma}}_{b}\right\|+\left\|\boldsymbol{C}_{21}\right\|+\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB^=AB^=UbH(AB^)Vb=C11Σ^b+C21+C22
will be smaller than ε B , \varepsilon_{B}, εB, which contradicts the assumption that B B B gives the minimum value. In the same way, we have C 21 = 0 C_{21}=0 C21=0 and C 11 = Σ ^ b . C_{11}=\hat{\mathbf{\Sigma}}_{b} . C11=Σ^b. Then we have:
C = U b H A V b = [ Σ ^ b 0 0 C 22 ] \boldsymbol{C}=\boldsymbol{U}_{b}^{H} \boldsymbol{A} \boldsymbol{V}_{b}=\left[\begin{array}{cc} \hat{\boldsymbol{\Sigma}}_{b} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{22} \end{array}\right] C=UbHAVb=[Σ^b00C22]
since Σ ^ b \hat{\mathbf{\Sigma}}_{b} Σ^b is diagonal, it consists of r r r singular values of A . \boldsymbol{A} . A. We can get:
ε B = ∥ C − Σ b ∥ = ∥ C 22 ∥ \begin{aligned} \varepsilon_{B} &=\left\|\boldsymbol{C}-\boldsymbol{\Sigma}_{b}\right\| \\ &=\left\|\boldsymbol{C}_{22}\right\| \end{aligned} εB=CΣb=C22
since both U b U_{b} Ub and V b V_{b} Vb are unitary matrices, we have:
∥ A ∥ 2 = ∥ C ∥ 2 = ∥ Σ ^ b ∥ 2 + ∥ C 22 ∥ 2 \|\boldsymbol{A}\|^{2}=\|\boldsymbol{C}\|^{2}=\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2}+\left\|\boldsymbol{C}_{22}\right\|^{2} A2=C2=Σ^b2+C222
Then:
∥ c x ∥ 2 = ∥ A ∥ 2 − ∥ Σ ^ b ∥ 2 = ∑ m = 1 k σ m 2 − ∥ Σ ^ b ∥ 2 \begin{aligned} \left\|c_{x}\right\|^{2} &=\|A\|^{2}-\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2}\\ &=\sum_{m=1}^{k} \sigma_{m}^{2}-\left\|\hat{\boldsymbol{\Sigma}}_{b}\right\|^{2} \end{aligned} cx2=A2Σ^b2=m=1kσm2Σ^b2
Obviously, when Σ ^ b \hat{\mathbf{\Sigma}}_{b} Σ^b holds the r r r largest singular values σ 1 , … , σ r \sigma_{1}, \ldots, \sigma_{r} σ1,,σr of the matrix A \boldsymbol{A} A ∥ C 22 ∥ 2 \left\|\boldsymbol{C}_{22}\right\|^{2} C222 and then ε B \varepsilon_{B} εB reaches its minimum value:
ε B 2 = ∣ C 22 ∣ ∣ 2 = ∑ m = r + 1 k σ m 2 = ε r 2 \varepsilon_{B}^{2}=\left.\left|\boldsymbol{C}_{22}\right|\right|^{2}=\sum_{m=r+1}^{k} \sigma_{m}^{2}=\varepsilon_{r}^{2} εB2=C222=m=r+1kσm2=εr2
Therefore, we can draw the conclusion that A ^ \hat{A} A^ is the best rank r r r approximation to A A A based on minimisation of the error matrix’ Frobenius norm ∥ A − B ∥ \|\boldsymbol{A}-\boldsymbol{B}\| AB

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值