Hession矩阵判断极值

多元函数的泰勒展开式和Hession矩阵的定义

泰勒公式是将一个在 x = x 0 x=x_0 x=x0处具有 n n n阶导数的函数 f ( x ) f(x) f(x)利用关于 ( x − x 0 ) (x-x_0) (xx0) n n n次多项式来逼近函数的方法。
f ( x 1 , x 2 , . . x n ) f(x_1, x_2,..x_n) f(x1,x2,..xn)在点 X 0 X_0 X0处的泰勒展开:
f ( X ) = f ( X 0 ) + ∇ f ( X 0 ) T Δ X + 1 2 ! Δ X T G ( X 0 ) Δ X + o ( ∣ Δ X ∣ 2 ) f(X)=f(X_0)+\nabla f(X_0)^T\Delta X+\frac{1}{2!} \Delta X^TG(X_0)\Delta X+o(|\Delta X|^2) f(X)=f(X0)+f(X0)TΔX+2!1ΔXTG(X0)ΔX+o(ΔX2)
其中
G ( X ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ] ∣ X 0 , Δ X = ( Δ x 1 Δ x 2 ) , G(X)=\begin{bmatrix} \frac{\partial^2f }{\partial x_1^2} & \frac{\partial^2f }{\partial x_1\partial x_2} \\ \frac{\partial^2f }{\partial x_2\partial x_1} &\frac{\partial^2f }{\partial x_2^2} \end{bmatrix} \Bigg|_{X_0},\Delta X= \begin{pmatrix} \Delta x_1\\\Delta x_2 \end{pmatrix}, G(X)=[x122fx2x12fx1x22fx222f]X0,ΔX=(Δx1Δx2),
G ( X ) G(X) G(X)成为Hession矩阵.

Hession矩阵正定与函数极值

定理:

一阶导数为0或者说梯度为0的情况下:

  1. 正定 - 极小值
  2. 负定 - 极大值
  3. 不定 - 非极值
  4. 半正定或半负定 - 不确定

证明

  1. 因为Hession矩阵正定,则
    Δ X T G ( X 0 ) Δ X > 0 \Delta X^TG(X_0)\Delta X > 0 ΔXTG(X0)ΔX>0
    所以存在 Θ > 0 ,    Θ \Theta>0, \ \ \Theta Θ>0,  Θ n n n维向量使得 X = X 0 + Θ X=X_0+\Theta X=X0+Θ
    f ( X ) = f ( X 0 + Θ ) = f ( X 0 ) + ∇ f ( X 0 ) T Δ X + 1 2 ! Δ X T G ( X 0 ) Δ X + o ( ∣ Δ X ∣ 2 ) > f ( X 0 ) + ∇ f ( X 0 ) T Δ X > f ( X 0 ) \begin{aligned} f(X) &= f(X_0+\Theta) \\ &= f(X_0)+\nabla f(X_0)^T\Delta X+\frac{1}{2!} \Delta X^TG(X_0)\Delta X+o(|\Delta X|^2) \\ &>f(X_0)+\nabla f(X_0)^T\Delta X\\ &>f(X_0) \end{aligned} f(X)=f(X0+Θ)=f(X0)+f(X0)TΔX+2!1ΔXTG(X0)ΔX+o(ΔX2)>f(X0)+f(X0)TΔX>f(X0)
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Hessian矩阵是多元函数极值判定的重要工具。对于一个具有n个变量的多元函数f(x1, x2, ... , xn),Hessian矩阵是一个n×n的矩阵,其元素为二阶偏导数。Hessian矩阵的定义如下: Hessian矩阵的第i行第j列元素,即Hessian矩阵的第(i, j)元素,表示函数f对第i个变量x_i和第j个变量x_j的混合偏导数。 多元函数的极值可能出现在驻点 (critical point)或者临界点 (boundary point)上,通过Hessian矩阵可以判断一个驻点的极值类型。具体的判断方法如下: 1. 首先,计算函数f的一阶偏导数,求出所有的驻点。 2. 对于每个驻点,计算Hessian矩阵。 3. 判断Hessian矩阵的正定性(positive definite)、负定性(negative definite)、不定性(indefinite)或者半定性(positive semi-definite和negative semi-definite)。 - 如果Hessian矩阵在驻点处是正定的,则该点为函数的极小值点; - 如果Hessian矩阵在驻点处是负定的,则该点为函数的极大值点; - 如果Hessian矩阵在驻点处是不定的,则该点既不是极小值点也不是极大值点; - 如果Hessian矩阵在驻点处是半定的,则需要进一步分析。 4. 进一步分析半定性的情况。 - 如果Hessian矩阵在驻点处是半正定的,则该点可能是函数的极小值点,也可能是鞍点; - 如果Hessian矩阵在驻点处是半负定的,则该点可能是函数的极大值点,也可能是鞍点; - 如果Hessian矩阵在驻点处即半正定又半负定,则该点既可能是函数的极小值点又可能是极大值点。 通过以上步骤,我们可以利用Hessian矩阵判断多元函数的驻点的极值类型,从而找到函数的极值点。需要注意的是,Hessian矩阵为对称矩阵,而且其元素的值与函数的表达式有关,要根据具体问题进行计算,以得到准确的极值判定结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值