OpenMP + MPI 编程 (三)Dealing with NUMA and Why Hybrid? Or Why Not?

NUMA(非一致性内存访问)在并行编程中带来了内存访问的复杂性,但通过混合编程可以利用共享和分布式内存的优势。混合编程旨在平衡计算负载,减少内存流量,特别是在内存密集型应用中。然而,混合使用SMP和MPI可能会导致性能下降,存在资源浪费的风险。混合编程的主要动机在于优化节点内的计算和内存使用,提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dealing with NUMA

How do we deal with NUMA (Non-Uniform Memory Access)?

Standard models for parallel programs assume a uniform architecture

  • Threads for shared memory

    • parent process uses pthreads or OpenMP to fork multiple threads
    • threads share the same virtual address space
    • also known as SMP = Symmetric MultiProcessing
  • Message passing for distributed memory

    • processes use MPI to pass messages (data) between each other
    • each process has its own virtual address space
      If we attempt to combine both types of models -
  • Hybrid programming

    • try to exploit the whole shared/distributed memory hierarchy

Why Hybrid? Or Why Not?

Why hybrid?

  • Eliminates domain decomposition at node level
  • Automatic memory coherency at node level
  • Lower (memory) latency and data movement within node
  • Can synchronize on memory instead of barrier

Why not hybrid?

  • An SMP algorithm created by aggregating MPI parallel components on a node (or on a socket) may actually run slower
  • Possible waste of effort

Motivation for hybrid

  • Balance the computational load
  • Reduce memory traffic, especially for memory-bound applications
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值