2.论文笔记

该研究提出了一种结合3D卷积和卷积长短期记忆(C-LSTM)的4D深度学习模型,用于动态对比增强磁共振成像(DCE-MRI)中的肝细胞癌(HCC)肿瘤分割。模型在HCC病灶分割的Dice得分、Hausdorff距离和体积相似度上表现出优越性能,但预测速度较慢。研究讨论了通过改进预测策略和模型结构来提高效率的可能性,并指出模型可能对肝脏肿瘤分级的潜在应用。
摘要由CSDN通过智能技术生成

文章信息

背景、目的及结论

结果与讨论

文章好在哪里

自我想法(125)

作者:

He Wang*、Rencheng Zheng

单位:

复旦大学类脑智能科学技术研究所;复旦大学计算神经科学与类脑智能教育部重点实验室

期刊:(1区)

IEEE TRANSACTIONS ON MEDICAL IMAGING

题目:

Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM

背景:

HCC的早期诊断和治疗对于成功切除肿瘤至关重要[3]。允许确定基于体积的定量信息(例如纹理特征)的准确肿瘤分割可以有利于肝脏治疗计划程序,并提供更可靠的治疗反应分类[4]、肝脏肿瘤分类[5]和患者生存预测[6]。并且深度学习在肝肿瘤分割方面也取得了显著成果,

目的:

肝脏肿瘤的准确分割,有助于医生做出适当的治疗决策,评估手术治疗的有效性,对肝癌的临床诊断至关重要。在这项研究中,我们提出了一种基于 3D 卷积和卷积长短期记忆肝细胞癌 (HCC) 病变 (C-LSTM) 的 4 维 (4D) 深度学习模型进行分割。

结论:

所提出的基于 3D 卷积和 C-LSTM 的模型可以实现对 HCC 病灶的准确分割。

结果:

所提出的模型(基于3D-Conv和C-LSTM的4D深度学习模型)在肝肿瘤分割方面的 Dice 得分为 0.825±0.077,Hausdorff 距离为 12.84±8.14 mm,体积相似度为 0.891±0.080,优于 3D U-net 模型、RA-UNet 模型和消融研究中的其他模型在内部和外部测试集,与nnU-Net 模型相当

讨论:

与nnU-net模型和RA-Unet模型相比,虽然已经得到了改进,但由于模型体积大,且一次只能预测一个切片,所提模型的预测速度还是相对较慢。

有三种替代选择:

  • 提高预测速度:可以尝试保留输入图像块的中间三个切片的预测结果,而不是只保留当前模型中的一个切片。
  • 实现更快的预测,但性能稍差:可以选择基于2.5 CNN的 Basic 模块作为替代方案。
  • 可以考虑更换batch normalization层以获得更好的训练效果
  1. 过去的研究没有过多关注层间信息或动态信息有效和高效的使用。本文通过结合多相DCE图像的信息以及组织成像特征在多对比度图像上的变化(区分HCC与正常或其他病变的重要标志)的信息来提高HCC分割性能
  2. 对于多相图像分别进行单独处理,获取更多特征
  3. 提出“肝脏分割的机制可能进一步扩展到肝脏肿瘤分级”思路应用

1:

临床上对HCC诊断的成像是用DCE-MRI,因为其成像带有时间序列的特点,考虑会使用LSTM,为适应对图像的处理考虑使用近期提出的C-LSTM,总结了使用该模块的论文结果不满意地方,做出创新。

2:

模型总体框架

文中图5、6消融实验的图

5:

目录

一、DCE-MRI

二、双三次插值

三、数据预处理归一化

四、LSTM


一、DCE-MRI

动态对比增强磁共振成像

静脉注射造影剂(钆喷酸葡胺)后25~35s、55~75s和180~240s获得肝动脉期、门静脉期和延迟期图像,每一个时期获得的图像称为一相。

二、双三次插值

参考的文章:点击打开链接

/**********************简要过程*******************************
功能:双三次插值缩放图片
数学原理:假设原图像A的大小为m*n,新图像B的大小为M*N
如果我们要求B(X,Y)处的像素值:
我们首先可以得到B(X,Y)在图像A中对应的位置(x,y)=(X*(m/M),Y*(N/n))
这个时候求得的x,y是小数值,我们可以通过这个小数值坐标找到距离最近的16个像素点,
利用所选择的基函数,求出对应的每个像素的权值,最终获得pixelB(X,Y)
**********************************************************/

详细过程如下:

假设源图像A大小为m*n,缩放K倍后的目标图像B的大小为M*N,即K=M/m。A的每一个像素点是已知的,B是未知的,我们想要求出目标图像B中每一像素点(X,Y)的值,必须先找出像素(X,Y)在源图像A中对应的像素(x,y),再根据源图像A距离像素(x,y)最近的16个像素点作为计算目标图像B(X,Y)处像素值的参数,利用BiCubic基函数求出16个像素点的权重,图B像素(x,y)的值就等于16个像素点的加权叠加。

根据比例关系x/X=m/M=1/K,我们可以得到B(X,Y)在A上的对应坐标为A(x,y)=A(X*(m/M),Y*(n/N))=A(X/K,Y/K)。如图所示P点就是目标图像B在(X,Y)处对应于源图像A中的位置,P的坐标位置会出现小数部分,所以我们假设 P的坐标为P(x+u,y+v),其中x,y分别表示整数部分,u,v分别表示小数部分(蓝点到a11方格中红点的距离)。那么我们就可以得到如图所示的最近16个像素的位置,在这里用a(i,j)(i,j=0,1,2,3)来表示,如上图。

我们要做的就是求出BiCubic函数中的参数x,从而获得上面所说的16个像素所对应的权重W(x)。BiCubic基函数是一维的,而像素是二维的,所以我们将像素点的行与列分开计算。BiCubic函数中的参数x表示该像素点到P点的距离,例如a00距离P(x+u,y+v)的距离为(1+u,1+v),因此a00的横坐标权重i_0=W(1+u),纵坐标权重j_0=W(1+v),a00对B(X,Y)的贡献值为:(a00像素值)* i_0* j_0。因此,a0X的横坐标权重分别为W(1+u),W(u),W(1-u),W(2-u);ay0的纵坐标权重分别为W(1+v),W(v),W(1-v),W(2-v);B(X,Y)像素值为:

这里写图片描述

三、数据预处理归一化

参考的文章:点击打开链接

归一化 Normalization 方法泛指把数据特征转换为相同尺度的方法 比如把数据特征映射到[0, 1] [−1, 1] 区间内 或者映射为服从均值为 0 方差为 1的标准正态分布。

(一)为何要进行数据预处理

1.任何收集而来的庞大数据往往是不能一拿到就可以立马使用,比如一些数值大的数据,计算量复杂度高,不容易收敛,很难进行统计处理。

2.数据不符合正态分布,无法做一些符合正态分布的数学分析。

所以为了对数据进行更好的利用,我们需要使数据标准化。

(二)归一化目标

1.主要是为了数据处理方便

2.解决数据的可比性

(三)归一化优点

1.归一化后加快了梯度下降求最优解的速度

2.有可能提高精度

(四)归一化方法

有min-max标准化、Z-score标准化、Sigmoid函数方法,这里描述Z-score标准化

将每一个维特征都调整为均值为 0 方差为 1 假设有𝑁 个样本 {𝒙 (𝑛) } 𝑁 𝑛=1 对于每一维特征 𝑥 我们先计算它的均值和方差

然后 将特征 𝑥 (𝑛) 减去均值 并除以标准差 ,得到新的特征值

其中标准差 𝜎 不能为 0 如果标准差为 0 说明这一维特征没有任何区分性 可以 直接删掉。

四、LSTM

参考文章:点击打开链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值