- 博客(1207)
- 资源 (2)
- 收藏
- 关注

原创 《多模态融合改进》目录一览 | 专栏介绍 :全网 第一份 完整的多模态改进教程,提供《多模态模型改进完整项目包》-开箱即用
在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单
2025-04-15 13:31:46
4019
11

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论
2025-03-10 22:00:24
9763
49

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件
在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。
2024-12-30 16:02:54
1989
2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学
2024-12-24 13:26:10
6771
3

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习
2024-12-03 20:39:23
12808
9

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 15:10:44
31054
184

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 12:33:51
7615
6

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-09-20 15:24:43
3495
2
原创 YOLOv13模型结构详解:DS-C3k2 | DSConv | HyperACE | FullPAD | 超图 | 顶点 | 超边
超图关联增强阶段(HyperACE 模块)以多尺度特征图为输入,通过自适应超图计算,动态生成超边并进行超图卷积,实现特征聚合与增强。包含基于 C3AH 模块的全局高阶感知分支和基于 DS-C3k 块的局部低阶感知分支,同时保留快捷连接信息,实现全局 - 局部、高 - 低阶的互补视觉关联感知。
2025-08-20 22:37:10
218
原创 YOLOv13改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
本文记录的是。通过独特的设计原理,在保持轻量级的同时实现了高效的特征注意力机制,增强了网络的表示能力。本文对YOLOv13进行二次创新,以增强模型性能。
2025-08-20 11:16:16
4
原创 YOLOv13改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
本文记录的是。。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。
2025-08-20 11:11:35
2
原创 YOLOv13改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力
本文记录的是利用模块优化的目标检测网络模型。的作用在于同时包含了通道信息和空间信息,克服了常见通道注意力方法只考虑通道关系而忽略空间信息的问题。相比一些只提供全局长程信息的方法,能更好地表达网络特征。本文将其加入到的不同位置中,综合多种信息,更好地突出重要特征,从而提升模型对物体检测的表达能力。Mixed local channel attention for object detection的输入特征向量会进行两步池化。首先通过局部池化将输入转化为1∗C∗ks∗ks1*C*ks*ks1∗C∗ks∗ks的向
2025-08-20 11:07:58
2
原创 YOLOv13改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含DSC3k2二次创新)
本文记录的是利用模型中提出的模块优化的目标检测网络模型。利用挤压轴向注意力有效地提取全局语义信息,并通过细节增强核补充局部细节,优化了的特征提取能力。本文将其加入到的不同位置中,使模型能够在不引入过多计算开销的情况下聚合空间信息。SeaFormer++: Squeeze-enhanced Axial Transformer for Mobile Visual Recognition传统的全局自注意力机制在处理高分辨率图像时计算成本和内存需求高,不适合移动设备。为了解决这个问题,需要设计一种高效的注意力模块,
2025-08-20 11:02:13
2
原创 YOLOv13改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新
本文记录的是利用聚焦线性注意力模块优化的目标检测网络模型。的作用在于同时解决了线性注意力的焦点能力不足和特征多样性受限的问题,克服了常见线性注意力方法存在性能下降或引入额外计算开销。本文将其加入到中,进一步发挥其性能。FLatten Transformer: Vision Transformer using Focused Linear Attention基于上述分析,结构如下:O=Sim(Q,K)V=ϕp(Q)ϕp(K)TV+DWC(V)O = Sim(Q, K)V=\phi_p(Q)\phi_p(K)
2025-08-20 10:53:13
1
原创 YOLOv13改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块
许多证据表明层次化网络对图像恢复(IR)任务通常不太有效,因为IR的目标是逐个预测像素值(密集预测),而缩小特征图会丢失重要的像素级信息。然而,层次化结构有降低时间复杂度以及学习语义级和像素级特征表示的优点。为了弥补缺点并利用优点,设计了H - RAMi层。
2025-08-20 10:46:33
1
原创 YOLOv13改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
本文记录的是利用模块优化的目标检测网络模型。的作用在于通过三个分支结构捕捉跨维度交互,同时包含通道信息和空间信息,克服了常见注意力方法中通道和空间分离计算以及未考虑跨维度交互和维度缩减的问题。相比一些传统注意力机制,能更好地表达网络特征。本文将其应用到中,并进行二次创新,使网络能够综合多种维度信息,更好地突出重要特征,从而提升模型在不同任务中的性能。Rotate to Attend: Convolutional Triplet Attention Module是一种轻量级的注意力机制模块,以下是对其模块设计
2025-08-20 10:39:28
1
原创 YOLOv13改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息
本文记录的是利用模块优化的目标检测网络模型。在的基础上引入,同时包含了通道信息和全局信息,克服了传统卷积神经网络在全局表示学习不足以及本身可优化空间的问题。本文将其加入到的不同位置中,并进行二次创新,充分发挥模块的性能。SENetV2: Aggregated dense layer for channelwise and global representations及其改进的实现代码如下:四、创新模块4.1 改进点1⭐模块改进方法:直接加入(第五节讲解添加步骤)。模块改进方法:基于的(第五节讲解添加
2025-08-20 10:32:33
1
原创 YOLOv13改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响
本文记录的是利用模块优化的目标检测网络模型。全称为:,其结合了频域计算的高效性和卷积操作的特性,有效地降低了注意力计算的复杂度。在加入到网络中,提升图像特征的表示能力,特别是在处理高分辨率图像时能够减少计算成本并降低噪声影响。Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring首先注意到缩放点积注意力计算中QK⊤QK^{\top}QK⊤的每个元素是通过内积获得的,基于此,如果对qiq_{i}qi和所有
2025-08-20 10:25:33
2
原创 YOLOv13改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新DSC3k2
在视觉注意力网络(VAN)中,大核注意力(LKA)模块虽在视觉任务中表现出色,但深度卷积层随卷积核增大,计算和内存消耗呈二次增长。为解决此问题,使VAN的注意力模块能使用极大卷积核,提出了LSKA模块。
2025-08-20 10:10:13
1
原创 YOLOv13改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
解决传统卷积和注意力机制的局限性传统卷积神经网络(CNN)在处理图像分割时,对于不同尺度的物体检测存在问题。如果物体超出对应网络层的感受野,会导致分割不足;而过大的感受野相比物体实际大小,背景信息可能会对预测产生不当影响。虽然能通过注意力机制聚合全局信息,但在有效建模局部信息方面存在局限,难以检测局部纹理。充分利用体积上下文并提高计算效率大多数当前方法处理三维体积图像数据时采用逐片处理的方式(伪3D),丢失了关键的片间信息,降低了模型的整体性能。需要一种。
2025-08-20 10:02:56
1
原创 YOLOv13改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率(二次改进DSC3k2)
本文记录的是基于Mobile MQA模块的YOLOv13目标检测改进方法研究。中的是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,
2025-08-20 09:37:24
1
原创 YOLOv13改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含DSC3k2二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。
2025-08-20 09:32:10
1
原创 YOLOv13改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv13的过程中,同时还,便于集成到网络中。
2025-08-20 09:18:34
1
原创 YOLOv13改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度(二次改进DSC3k2)
本文记录的是基于蒙特卡罗注意力(MCAttn)模块的YOLOv13目标检测改进方法研究。利用提高的跨尺度特征提取能力,使模型能够更好地传递和融合提取的多尺度特征,提高对小目标的关注度。Exploiting Scale-Variant Attention for Segmenting Small Medical Objects使用一种基于随机采样的池化操作来生成尺度无关的注意力图。它从三个不同尺度(3×33×33×3、2×22×22×2和1×11×11×1,即池化张量)中随机选择一个1×11×11×1注意力图
2025-08-19 11:14:26
14
原创 YOLOv13改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含DSC3k2二次创新)
本文记录的是基于NAM模块的YOLOv12目标检测改进方法研究。许多先前的研究专注于通过注意力操作捕获显著特征,但缺乏对权重贡献因素的考虑,而这些因素能够进一步抑制不重要的通道或像素。而本文利用改进,通过权重的贡献因素来改进注意力机制,提高模型精度。NAM: Normalization-based Attention Module注意力模块的设计的原理和优势如下:Bin−μB+β,其中μB\mu_{B}μB和σB\sigma_{B}σB分别是小批量BBB的均值和标准差;γ\gammaγ和β\be
2025-08-19 11:05:50
10
原创 YOLOv13改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含DSC3k2二次创新)
本文记录的是。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的问题。YOLOv13。
2025-08-19 10:58:42
5
原创 YOLOv13改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互
本文记录的是。是图像去雾领域新提出的模块能够,在目标检测领域中同样有效。
2025-08-19 10:45:21
4
原创 YOLOv13改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块(含DSC3k2二次创新)
本文记录的是基于SCSA-CBAM注意力模块的YOLOv13目标检测改进方法研究。现有注意力方法在空间-通道协同方面未充分挖掘其潜力,缺乏对多语义信息的充分利用来引导特征和缓解语义差异。构建一个空间-通道协同机制,
2025-08-19 10:32:25
3
原创 YOLOv13改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息
本文记录的是基于MCA注意力模块的YOLOv13目标检测改进方法研究。普通的轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状,而MCA注意力,在改进YOLOv13的过程中,能够契合目标形态,更有效的获取目标的全局信息。
2025-08-19 10:22:02
6
原创 YOLOv13改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
本文记录的是。GAM注意力模块。本文利用GAM改进YOLOv13,以增强模型的跨维度交互能力。
2025-08-19 09:54:43
4
原创 YOLOv13改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例
本文记录的是基于SimAM注意力模块的YOLOv13目标检测方法研究。通过优化能量函数来获得每个神经元的三维权重,而无需引入额外的参数或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。是一种简单且无参数的注意力模块,主要用于卷积神经网络。是该通道上除(t)以外所有神经元的均值和方差。由于上述解是在单个通道上得到的,假设单个通道中的所有像素遵循相同的分布,那么可以对所有神经元计算一次均值和方差,并在该通道上重复使用,得到最小能量计算公式:et∗=4(σ^2+λ)(t−μ^)
2025-08-19 09:41:36
8
原创 YOLOv13改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
这篇文章带来一个经典注意力模块的汇总,虽然有些模块已经发布很久了,但后续的注意力模块也都是在此基础之上进行改进的,对于初学者来说还是有必要去学习了解一下,以加深对模块,模型的理解。
2025-08-19 09:30:06
102
原创 YOLOv13改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度(二次改进DSC3k2)
本文记录的是利用改进检测精度,详细说明了优化原因,注意事项等。原论文在红外小目标检测任务中,小目标在多次下采样操作中容易丢失关键信息。通过替代编码器和解码器基本组件中的传统卷积操作,更好地保留小目标的重要信息。HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch si
2025-08-19 09:19:30
3
原创 YOLOv13改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域 二次改进DSC3k2
本文记录的是利用模块优化的目标检测网络模型。全称为,其作用在于通过可变形注意力机制,同时包含了数据依赖的注意力模式,克服了常见注意力方法存在的内存计算成本高、受无关区域影响以及数据不可知等问题。相比一些只提供固定注意力模式的方法,能更好地聚焦于相关区域并捕捉更有信息的特征。Vision Transformer with Deformable Attention+ϕ(B^;R))v~(m),其中还考虑了相对位置偏移RRR和变形点提供的更强大的相对位置偏差ϕ(B^;R)\phi(\hat{B} ; R)ϕ(B
2025-08-19 09:15:11
4
原创 YOLOv13改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰
本文记录的是利用模型中提出的模块优化的目标检测网络模型。利用卷积操作的局部特征提取能力,并通过自注意力机制补充全局信息,优化了特征提取能力。本文将其加入到中,使模型能够增强复杂图像的适应能力,并在不增加过多计算负担的情况下提高特征提取能力。Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising卷积操作受限于局部性和有限的感受野,在对全局特征建模时存在不足。而借助注意力机制在提取全局特征和捕捉长程依赖方面表现出色
2025-08-19 08:57:49
3
原创 YOLOv13改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新DSC3k2)
本文记录的是利用模块优化的目标检测网络模型。将静态上下文和自注意力学习动态上下文统一在一个架构中,有效地提升了在 2D 特征图上进行视觉表示学习时自注意力学习的能力,本文将深入研究的原理,并将其应用到中,进而更有效的增强模型对视觉信息的学习和表示能力。Contextual Transformer Networks for Visual Recognition如图所示,假设输入的2D特征图为XXX,键K=XK = XK=X,查询Q=XQ = XQ=X,值V=XWvV = XW_{v}V=XWv。首先使用k×
2025-08-19 08:51:37
3
原创 YOLOv13改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势(二次改进DSC3k2)
本文记录的是利用改进检测模型,卷积和自注意力是两种强大的表示学习技术,本文利用两者之间潜在的紧密关系,进行二次创新,实现优势互补,减少冗余,通过实验证明,实现模型有效涨点。On the Integration of Self-Attention and Convolution传统的卷积可以分解为多个1×11×11×1卷积,然后是位移和求和操作。例如对于一个k×kk×kk×k的卷积核,可分解为k2k^{2}k2个1×1×1×卷积。自注意力模块中查询、键和值的投影可以看作是多个1×11×11×1卷积,然后计算注
2025-08-19 08:44:38
3
原创 YOLOv13改进策略【Conv和Transformer】| CVPR-2024 Single-Head Self-Attention 单头自注意力(二次改进DSC3k2)
宏观设计层面:传统的高效模型大多采用4×44×44×4的patchify stem和4阶段配置,存在空间冗余,导致早期阶段速度瓶颈且内存访问成本高。研究发现采用更大步长的16×1616×1616×16patchify stem和3阶段设计可减少空间冗余,降低内存访问成本,提高性能。微观设计层面:**多注意力头机制(MHSA)**在计算和应用注意力映射时虽能提升性能,但存在冗余。
2025-08-19 08:39:21
4
原创 【YOLOv13多模态融合改进】| 引入轻量化特征提取模块,解决多模态中的双模型参数量、计算量增加问题(适用不同的轻量化模块)
本文以EfficientNet中的MBConv为例,介绍其原理,在后续的轻量化过程中,可按照同样的步骤替换成其它轻量化模块。
2025-08-18 13:53:22
326
原创 YOLOv13改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能(二次改进DSC3k2)
本文记录的是利用优化的目标检测网络模型。通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition是一种用于视觉识别的新型卷积网络架构,其设计的原理和优势如下:采用金字塔结构,与和网络类似,共四个阶段,每阶段特征图分辨率不同,连
2025-08-18 11:10:21
7
指数加权移动平均平滑-Python实现
2024-10-24
高斯滤波-Python实现
2024-10-24
Savitzky-Golay滤波-Python实现
2024-10-24
移动平均平滑算法-Python实现
2024-10-24
RT-DETR官方最新源码资源
2024-10-24
小波卷积论文:Wavelet Convolutions for Large Receptive Fields
2024-10-24
模型的剪枝和蒸馏,实现方法和步骤
2024-12-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人