- 博客(981)
- 资源 (2)
- 收藏
- 关注

原创 《多模态融合改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用
在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单
2025-04-15 13:31:46
1992
4

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论
2025-03-10 22:00:24
5941
10

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件
在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。
2024-12-30 16:02:54
1840
2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学
2024-12-24 13:26:10
5221
3

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习
2024-12-03 20:39:23
9167
2

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 15:10:44
22455
125

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 12:33:51
6518
3

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-09-20 15:24:43
3194
原创 YOLOv12改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进A2C2f
在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。
2025-05-28 09:36:29
118
原创 YOLOv11改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C3k2
在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。
2025-05-28 09:35:51
4
原创 YOLOv10改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C2fCIB
本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 YOLOv10 的目标检测网络模型。和源自图像超分辨率领域的模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到中,并进行,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能
2025-05-27 09:39:03
110
原创 YOLOv8改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2025-05-27 09:02:18
77
原创 【YOLOv8多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。
2025-05-26 13:51:19
155
原创 YOLOv11改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张
本文记录的是利用风车卷积改进YOLOv11的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L
2025-05-26 08:34:49
511
原创 YOLOv12改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张
本文记录的是利用风车卷积改进YOLOv12的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L
2025-05-25 10:30:00
30
原创 YOLOv10改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张
本文记录的是利用风车卷积改进YOLOv10的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L
2025-05-25 10:00:00
12
原创 RT-DETR改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的CTA 通道转置注意力 二次改进HGBlock、ResNetLayer
本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 RT-DETR的目标检测网络模型。和源自图像超分辨率领域的模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到中,并进行,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能力
2025-05-24 16:18:00
109
原创 【YOLOv10多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。
2025-05-24 16:15:12
29
原创 YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2025-05-24 16:14:40
165
原创 YOLOv10改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2025-05-23 11:12:30
29
原创 RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2025-05-23 09:09:02
111
原创 YOLOv12改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2025-05-22 10:33:54
549
原创 YOLOv10改进策略【Neck】| CFC和SFC模块,独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化
本文记录的是基于CFC和SFC模块的YOLOv10模型改进方法研究。 和 模块提出了创新的特征校准策略,通过定制上下文聚合解决上下文不匹配问题,通过分组校准改善空间特征不对齐问题,能以低额外成本高效提升提取特征的质量。将和应用到网络中,通过其独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化。Context and Spatial Feature Calibration for Real-Time Semantic Segmentation现有上下文建模方法在聚合上下文时,对所有像素采用固定方式
2025-05-22 10:32:17
112
原创 【YOLOv11多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。
2025-05-21 08:26:41
151
原创 YOLOv12改进策略【Neck】| CFC和SFC模块,独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化
本文记录的是基于CFC和SFC模块的YOLOv12模型改进方法研究。 和 模块提出了创新的特征校准策略,通过定制上下文聚合解决上下文不匹配问题,通过分组校准改善空间特征不对齐问题,能以低额外成本高效提升提取特征的质量。将和应用到网络中,通过其独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化。Context and Spatial Feature Calibration for Real-Time Semantic Segmentation现有上下文建模方法在聚合上下文时,对所有像素采用固定方式
2025-05-21 08:26:12
274
原创 【YOLOv12多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。
2025-05-20 08:30:49
515
原创 YOLOv8改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv8的过程中,同时还,便于集成到网络中。
2025-05-20 08:29:29
45
原创 YOLOv10改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv10的过程中,同时还,便于集成到网络中。
2025-05-19 09:11:04
112
原创 YOLOv12改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv12的过程中,同时还,便于集成到网络中。
2025-05-19 09:10:00
302
原创 YOLOv11改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv11的过程中,同时还,便于集成到网络中。
2025-05-18 16:17:10
101
原创 YOLOv8改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含C2f二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。
2025-05-18 16:16:37
38
原创 YOLOv10改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含C2fCIB二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。
2025-05-17 21:52:44
25
原创 YOLOv12改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含A2C2f二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。
2025-05-17 10:00:00
158
原创 YOLOv11改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含C3k2二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。
2025-05-16 10:27:55
137
原创 YOLOv10改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了损失函数。
2025-05-16 08:28:08
42
原创 YOLOv8改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了损失函数。
2025-05-16 08:27:50
109
原创 YOLOv11改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了损失函数。
2025-05-15 08:34:40
232
原创 YOLOv12改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了损失函数。
2025-05-15 08:34:23
410
原创 在YOLOv10的项目包中配置并运行Hyper-YOLO模型
Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。
2025-05-14 08:25:14
48
原创 在YOLOv11的项目包中配置并运行Hyper-YOLO模型
Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。
2025-05-14 08:24:49
441
2
高斯滤波-Python实现
2024-10-24
Savitzky-Golay滤波-Python实现
2024-10-24
指数加权移动平均平滑-Python实现
2024-10-24
移动平均平滑算法-Python实现
2024-10-24
RT-DETR官方最新源码资源
2024-10-24
小波卷积论文:Wavelet Convolutions for Large Receptive Fields
2024-10-24
模型的剪枝和蒸馏,实现方法和步骤
2024-12-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人