自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Limiiiing的博客

带你轻松学会YOLO。Learn YOLO easily, use YOLO effortlessly!

  • 博客(1450)
  • 资源 (2)
  • 收藏
  • 关注

原创 YOLOv13改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 已更新种不同的改进方案,专栏内的每篇文章皆,均可顺利运行。2️⃣ 订阅专栏即可进群获取以及从的各种答疑内容。3️⃣ 全新的YOLOv13改进专栏,,只为更好的满足论文发表的要求。专栏内容,专栏实时评分,全网最高,质量保证。🎫。。

2025-08-25 08:29:58 5649 21

原创 《多模态融合改进》目录一览 | 专栏介绍 :全网 第一份 完整的多模态改进教程,提供《多模态模型改进完整项目包》-开箱即用

在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单

2025-04-15 13:31:46 7796 22

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论

2025-03-10 22:00:24 16353 91

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件

在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。

2024-12-30 16:02:54 2196 2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学

2024-12-24 13:26:10 9815 23

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新260多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习

2024-12-03 20:39:23 21863 89

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 15:10:44 48736 339

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 12:33:51 9949 10

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-09-20 15:24:43 3925 3

原创 YOLO26改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力

本文记录的是利用模块优化的目标检测网络模型。的作用在于同时包含了通道信息和空间信息,克服了常见通道注意力方法只考虑通道关系而忽略空间信息的问题。相比一些只提供全局长程信息的方法,能更好地表达网络特征。本文将其加入到的不同位置中,综合多种信息,更好地突出重要特征,从而提升模型对物体检测的表达能力。Mixed local channel attention for object detection的输入特征向量会进行两步池化。首先通过局部池化将输入转化为1∗C∗ks∗ks1*C*ks*ks1∗C∗ks∗ks的向

2026-01-29 08:40:40 15

原创 YOLO26改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化

本文记录的是利用模块优化的目标检测网络模型。的作用在于通过三个分支结构捕捉跨维度交互,同时包含通道信息和空间信息,克服了常见注意力方法中通道和空间分离计算以及未考虑跨维度交互和维度缩减的问题。相比一些传统注意力机制,能更好地表达网络特征。本文将其应用到中,并进行二次创新,使网络能够综合多种维度信息,更好地突出重要特征,从而提升模型在不同任务中的性能。Rotate to Attend: Convolutional Triplet Attention Module是一种轻量级的注意力机制模块,以下是对其模块设计

2026-01-29 08:40:28 7

原创 YOLO26改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新

本文记录的是利用聚焦线性注意力模块优化的目标检测网络模型。的作用在于同时解决了线性注意力的焦点能力不足和特征多样性受限的问题,克服了常见线性注意力方法存在性能下降或引入额外计算开销。本文将其加入到中,进一步发挥其性能。FLatten Transformer: Vision Transformer using Focused Linear Attention基于上述分析,结构如下:O=Sim(Q,K)V=ϕp(Q)ϕp(K)TV+DWC(V)O = Sim(Q, K)V=\phi_p(Q)\phi_p(K)

2026-01-29 08:40:20 7

原创 YOLO26改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)

本文记录的是利用模型中提出的模块优化的目标检测网络模型。利用挤压轴向注意力有效地提取全局语义信息,并通过细节增强核补充局部细节,优化了的特征提取能力。本文将其加入到的不同位置中,使模型能够在不引入过多计算开销的情况下聚合空间信息。SeaFormer++: Squeeze-enhanced Axial Transformer for Mobile Visual Recognition传统的全局自注意力机制在处理高分辨率图像时计算成本和内存需求高,不适合移动设备。为了解决这个问题,需要设计一种高效的注意力模块,

2026-01-29 08:40:07 4

原创 YOLO26改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息

本文记录的是利用模块优化的目标检测网络模型。在的基础上引入,同时包含了通道信息和全局信息,克服了传统卷积神经网络在全局表示学习不足以及本身可优化空间的问题。本文将其加入到的不同位置中,并进行二次创新,充分发挥模块的性能。SENetV2: Aggregated dense layer for channelwise and global representations及其改进的实现代码如下:四、创新模块4.1 改进点1⭐模块改进方法:基于的(第五节讲解添加步骤)。添加到后如下:模块改进方法:基于的(

2026-01-29 08:39:52 5

原创 YOLO26改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块

许多证据表明层次化网络对图像恢复(IR)任务通常不太有效,因为IR的目标是逐个预测像素值(密集预测),而缩小特征图会丢失重要的像素级信息。然而,层次化结构有降低时间复杂度以及学习语义级和像素级特征表示的优点。为了弥补缺点并利用优点,设计了H - RAMi层。

2026-01-29 08:39:42 2

原创 YOLO26改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度

本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLO26的过程中,同时还,便于集成到网络中。

2026-01-29 08:39:32 5

原创 YOLO26改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2

在视觉注意力网络(VAN)中,大核注意力(LKA)模块虽在视觉任务中表现出色,但深度卷积层随卷积核增大,计算和内存消耗呈二次增长。为解决此问题,使VAN的注意力模块能使用极大卷积核,提出了LSKA模块。

2026-01-29 08:39:19 3

原创 YOLO26改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含C3k2二次创新)

本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。

2026-01-29 08:39:07 3

原创 YOLO26改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像

解决传统卷积和注意力机制的局限性传统卷积神经网络(CNN)在处理图像分割时,对于不同尺度的物体检测存在问题。如果物体超出对应网络层的感受野,会导致分割不足;而过大的感受野相比物体实际大小,背景信息可能会对预测产生不当影响。虽然能通过注意力机制聚合全局信息,但在有效建模局部信息方面存在局限,难以检测局部纹理。充分利用体积上下文并提高计算效率大多数当前方法处理三维体积图像数据时采用逐片处理的方式(伪3D),丢失了关键的片间信息,降低了模型的整体性能。需要一种。

2026-01-29 08:38:54 2

原创 YOLO26改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互

本文记录的是。是图像去雾领域新提出的模块能够,在目标检测领域中同样有效。

2026-01-28 13:19:11 10

原创 YOLO26改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含C3k2二次创新)

本文记录的是基于NAM模块的YOLO26目标检测改进方法研究。 许多先前的研究专注于通过注意力操作捕获显著特征,但缺乏对权重贡献因素的考虑,而这些因素能够进一步抑制不重要的通道或像素。而本文利用改进,通过权重的贡献因素来改进注意力机制,提高模型精度。NAM: Normalization-based Attention Module注意力模块的设计的原理和优势如下:​Bin​−μB​​+β,其中μB\mu_{B}μB​和σB\sigma_{B}σB​分别是小批量BBB的均值和标准差;γ\gammaγ和β\be

2026-01-28 13:13:34 11

原创 YOLO26改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含C3k2二次创新)

本文记录的是26。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的问题。YOLO26。

2026-01-28 13:08:27 10

原创 YOLO26改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块

本文记录的是。现有注意力方法在空间-通道协同方面未充分挖掘其潜力,缺乏对多语义信息的充分利用来引导特征和缓解语义差异。构建一个空间-通道协同机制,

2026-01-28 13:02:18 9

原创 YOLO26改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息

本文记录的是。普通的轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状,而MCA注意力,在改进YOLO26的过程中,能够契合目标形态,更有效的获取目标的全局信息。

2026-01-28 12:54:11 4

原创 YOLO26改进策略【注意力机制篇】| CVPR 2024 CGLU 卷积门控通道注意力 双分支结构 + 卷积增强门控的通道混合器,提升局部建模与鲁棒性

本文记录的是利用模块优化的网络模型。的作用在于采用双分支结构,同时包含了值分支和门控分支,实现对局部邻域信息的捕捉,克服了现有模型中在处理局部精细特征与动态通道筛选时的不足。本文将其融入的通道混合环节,并结合检测任务特性进行适配(如调整卷积核参数以匹配检测场景的局部特征需求),进一步强化模型对目标局部细节与空间位置的感知能力,从而提升其在目标检测等视觉任务中的精度与鲁棒性。TransNeXt: Robust Foveal Visual Perception for Vision Transformers之前

2026-01-28 12:47:52 7

原创 YOLO26改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

本文记录的是。中的是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,

2026-01-28 11:13:46 7

原创 YOLO26改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

本文记录的是利用改进检测精度,详细说明了优化原因,注意事项等。原论文在红外小目标检测任务中,小目标在多次下采样操作中容易丢失关键信息。通过替代编码器和解码器基本组件中的传统卷积操作,更好地保留小目标的重要信息。HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch si

2026-01-28 11:07:06 4

原创 YOLO26改进策略【注意力机制篇】| 改进基础篇,添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

这篇文章带来一个经典注意力模块的汇总,虽然有些模块已经发布很久了,但后续的注意力模块也都是在此基础之上进行改进的,对于初学者来说还是有必要去学习了解一下,以加深对模块,模型的理解。

2026-01-28 11:00:24 8

原创 YOLO26改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例

本文记录的是。SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。

2026-01-28 10:57:18 10

原创 YOLO26改进策略【YOLO和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制

本文记录的是利用模块优化的目标检测网络模型。模块具有独特优势。它不同于传统模块,能同时兼顾局部特征高效建模与长距离交互学习。常见模块要么在局部特征处理上有优势但长距离交互能力弱,要么反之,而模块克服了此问题。它融合了Mamba模型和线性注意力机制的优势,通过独特的结构设计,能够在保持计算效率的同时,精准地建模局部特征并学习长距离交互信息。本文将其用于的模型改进和二次创新,能够更加关注图像中的重要特征区域,抑制背景等无关信息的干扰,从而突出目标物体的关键特征。Demystify Mamba in Vision

2026-01-27 13:25:31 9

原创 YOLO26改进策略【YOLO和Mamba】| CVPR 2025:EfficientViM 压缩隐藏状态空间进行通道混合、单头设计减少内存操作,提升目标检测效率与精度

本文记录的是利用模块优化的目标检测网络模型。EfficientViM Block(基于隐藏状态混合器的状态空间对偶性模块) 的设计旨在,提升特征提取效率,同时兼顾全局依赖捕捉与局部细节保留。本文将深入研究的原理,并将其应用到中,通过重构特征提取流程、减少内存绑定操作、融合多阶段特征,增强模型在资源受限环境下的检测性能与速度。EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space DualityEfficie

2026-01-27 13:11:33 14

原创 YOLO26改进策略【YOLO和Mamba】| 2024 VM-UNet,高效的特征提取模块VSS block 二次创新提高精度

VM-UNet模型设计的出发点是解决现有CNN-based和模型在医学图像分割中的局限性,利用(SSMs)的优势,提出一种更有效的医学图像分割模型。具体来说,CNN-based模型在捕捉长距离信息方面存在不足,而模型由于自注意力机制的二次复杂度导致计算负担较重。SSMs模型如Mamba不仅在建模长距离依赖方面表现出色,还具有线性计算复杂度,这为VM-UNet的设计提供了理论基础。

2026-01-27 09:35:28 13

原创 YOLO26改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLO26-L !!! 最新的发文热点

Vision Clue Merge模块在Mamba - YOLO模型中同样重要,主要负责在模型的下采样过程中处理特征图,为后续的特征融合和目标检测任务提供更有效的信息。

2026-01-27 09:34:53 141

原创 YOLO26改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLO26-T !!! 最新的发文热点

模块是模型中的一个重要组成部分,其主要作用是在模型的初始阶段对输入图像进行处理,方便后续的特征提取和目标检测。以下是对。

2026-01-27 09:34:44 623

原创 YOLO26改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLO26-B !!! 最新的发文热点

ODSSBlock(Object Detection State Space Block)是Mamba - YOLO模型中的核心模块,对于提升模型的目标检测能力起着关键作用。它主要负责对输入特征进行深度处理,以学习更丰富和有效的特征表示,从而提高模型对目标物体的检测精度。

2026-01-27 09:34:34 88

原创 YOLO26改进策略【Backbone/主干网络】|替换HGNetV2骨干,包含RT-DETR中的l、x模型

本文记录的是基于HGNetv2的YOLO26目标检测改进方法研究。本文利用HGNetv2替换YOLO26的骨干网络,HGNetv2 通过其 GPU 推理友好的 3×3 标准卷积和层次化 HG Block 结构,能够为骨干网络提供高效且完整的特征提取能力。并且其中的和可在降低计算量的同时丰富特征表达,增强对多尺度目标特征的捕获能力,进而提高模型精度。本文配置了原论文中rtdetr-lrtdetr-x,以满足不同算力和检测精度的需求。

2026-01-27 09:34:24 12

原创 YOLO26改进策略【Backbone/主干网络】| CVPR 2025 替换骨干为MambaOut,去除冗余结构,挖掘视觉Mamba潜力

MambaOut是一种基于Gated CNN块构建的模型,其设计出发点基于对Mamba模型特性及视觉任务特点的深入分析,在结构上有独特之处,并展现出多方面优势。

2026-01-27 09:34:12 138

原创 在YOLO26的项目包中配置并运行TPAMI 2025的Hyper-YOLO模型

Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。

2026-01-27 09:34:02 110

原创 YOLO26改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2026-01-26 13:42:52 11

原创 YOLO26改进策略【Backbone/主干网络】| 替换骨干为PoolFormer,基于平均池化的Token混合器,通过聚合局部邻域特征实现信息交互

本文记录的是基于PoolFormer的YOLO26骨干网络改进方法研究。提出了创新的MetaFormer通用架构,通过极简单的池化操作实现Token混合,能以低参数和计算成本高效捕捉图像全局与局部特征。将应用到的骨干网络中,通过其分层结构和Token混合机制,实现精度与效率的平衡优化。本文在的基础上配置了原论文中, , , , 五种模型,以满足不同的需求。MetaFormer Is Actually What You Need for Vision在计算机视觉领域,Transformer模型取得了显著成功,

2026-01-26 13:40:48 127

指数加权移动平均平滑-Python实现

EWMA赋予每个数据点的权重随时间呈指数式递减,即越靠近当前时刻的数据点权重越大。权重分配是通过一个平滑系数α来实现的。该系数决定了近期数据相对于历史数据的权重比例。较大的α值意味着当前数据点的权重更大,平滑效果更灵敏于近期的变化;而较小的α值则使得平滑结果更加平滑,但可能会引入一定的滞后性。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/qq_42591591/article/details/140851940

2024-10-24

YOLO v10 s模型的导出文件

YOLO v10 s模型的导出文件

2024-10-24

YOLO v10 L模型的导出文件

YOLO v10 L模型的导出文件

2024-10-24

高斯滤波-Python实现

高斯滤波计算滤波窗口内各点相对于中心点的权重。权重分配的原则是:距离中心点越近的点权重越大,距离越远的点权重越小。这样,通过对窗口内各点进行加权平均,可以实现数据的平滑处理。

2024-10-24

Savitzky-Golay滤波-Python实现

选择滤波窗口:首先选择一个合适大小的滑动窗口,这个窗口在数据上滑动,对窗口内的数据进行处理。 多项式拟合:在每个滑动窗口内,使用多项式函数对数据进行最小二乘法拟合。多项式的阶数和窗口大小可以根据数据的特性进行调整,以达到最佳的滤波效果。 计算拟合值:根据拟合得到的多项式函数,计算窗口中心点的估计值,作为滤波后的结果。这个估计值反映了窗口内数据的局部趋势,从而实现了数据的平滑。

2024-10-24

中值滤波算法-Python实现

中值滤波是将窗口内的均值换成中值,进行滤波处理

2024-10-24

移动平均平滑算法-Python实现

移动平均平滑是基于平均值的概念,通过计算序列中每个数据点周围的一定数量的数据点的平均值,来平滑时间序列中的噪声和波动,从而更清晰地观察序列的趋势和周期性。

2024-10-24

卡尔曼滤波算法-Python实现

卡尔曼滤波算法-Python实现

2024-10-24

yolov10m导出的模型文件

yolov10m导出的模型文件

2024-10-24

YOLOv10b的.onnx文件

YOLO v10模型导出文件

2024-10-24

RT-DETR官方最新源码资源

YOLO 系列由于在速度和准确性之间进行了合理的权衡,已成为最流行的实时目标检测框架。然而,我们观察到 YOLO 的速度和准确性会受到非极大值抑制(NMS)的负面影响。最近,基于端到端 Transformer 的检测器(DETRs)为消除 NMS 提供了一种替代方案。尽管如此,高计算成本限制了它们的实用性,并阻碍了它们充分发挥排除 NMS 的优势。在本文中,我们提出了实时检测 Transformer(RT-DETR),据我们所知,这是第一个解决上述困境的实时端到端目标检测器。我们分两步构建 RT-DETR,借鉴先进的 DETR:首先我们专注于在提高速度的同时保持准确性,然后在保持速度的同时提高准确性。具体来说,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来快速处理多尺度特征,从而提高速度。然后,我们提出最小不确定性查询选择,为解码器提供高质量的初始查询,从而提高准确性。

2024-10-24

小波卷积论文:Wavelet Convolutions for Large Receptive Fields

小波卷积(Wavelet Convolutions)是一种在卷积神经网络(Convolutional Neural Networks, CNNs)中用于增加感受野(Receptive Field)同时避免过度参数化的方法。 WT 是一种时频分析工具,本文采用 Haar WT,它可以在保留一定空间分辨率的情况下对信号进行分解。通过将 WT 与卷积操作相结合,提出了 WTConv 层。 小波卷积首先对输入进行小波变换,将其分解为不同频率的子带,如通过与特定的卷积核进行深度可分离卷积实现一级 Haar WT,得到低频分量和多个高频分量。然后在不同的频率子带上进行小卷积核的卷积操作,这些小卷积核可以在更大的原始输入区域上操作,从而增加感受野。最后通过逆小波变换(IWT)将处理后的频率子带组合起来得到输出。

2024-10-24

社团管理系统

基于NetBeans的社团信息管理系统,支持社团信息的查询、修改、增加。并能根据调用数据库进行一系列的操作。

2019-01-09

基于java的社团信息管理系统

通过“javaApplication”,直接输出社团简单的操作信息。

2018-12-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除