自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Limiiiing的博客

带你轻松学会YOLO。Learn YOLO easily, use YOLO effortlessly!

  • 博客(1590)
  • 资源 (2)
  • 收藏
  • 关注

原创 YOLO26改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏已更新260多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手

2026-02-10 09:23:50 1975

原创 YOLOv13改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 已更新种不同的改进方案,专栏内的每篇文章皆,均可顺利运行。2️⃣ 订阅专栏即可进群获取以及从的各种答疑内容。3️⃣ 全新的YOLOv13改进专栏,,只为更好的满足论文发表的要求。专栏内容,专栏实时评分,全网最高,质量保证。🎫。。

2025-08-25 08:29:58 5935 22

原创 《多模态融合改进》目录一览 | 专栏介绍 :全网 第一份 完整的多模态改进教程,提供《多模态模型改进完整项目包》-开箱即用

在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单

2025-04-15 13:31:46 8027 22

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论

2025-03-10 22:00:24 16710 91

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件

在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。

2024-12-30 16:02:54 2217 2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学

2024-12-24 13:26:10 10027 26

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新260多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习

2024-12-03 20:39:23 22572 95

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 15:10:44 49774 342

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 12:33:51 10035 10

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-09-20 15:24:43 3977 3

原创 YOLO26改进策略【多YAML融合】| LEGM + SBA + RTDETRDecoder

SBA 模块在医疗图像分割中具有重要作用,其设计出发点是解决图像中物体边界模糊以及融合特征时的冗余和不一致问题。

2026-02-12 13:30:24 25

原创 YOLO26改进策略【多YAML融合】| UNetV2 + BiFormer + WIoU

Wise-IoU是一种基于IoU的损失函数,旨在解决目标检测中边界框回归损失函数在处理低质量训练数据时的问题。

2026-02-12 13:27:54 23

原创 YOLO26改进策略【多YAML融合】| HWD + PConv + Detect_MBConv

本文记录的是利用HWD + PConv + Detect_MBConv改进YOLO26,分别涉及骨干、颈部和检测头部分的改进。一方面按照此配置,其工作量及创新程度能够满足论文发表的需求,另一方面是一些难以融合多个YAML的举例,以帮助大家理解如何将多个YAML整合到一个YAML中。小波下采样:一个简单但有效的语义分割下采样模块。块由两个主要块组成:无损特征编码块和特征表示学习块。HWD模块与其他下采样模块对比:保留信息能力:传统的下采样方法(如最大池化、平均池化和步幅卷积等)会导致信息丢失,而通过引入,能够

2026-02-12 13:25:46 22

原创 YOLO26改进策略【多YAML融合】| StarNet + SDI + SDLoss

U-Net V2中的SDI模块在整个网络架构中起着关键作用,其设计旨在解决传统模型在特征融合方面的不足,通过独特的结构原理实现更高效的语义信息和细节融合,从而提升医学图像分割的性能。

2026-02-12 13:22:48 20

原创 YOLO26改进策略【多YAML融合】| DynamicTanh + SDI + PPA Detect

U-Net V2中的SDI模块在整个网络架构中起着关键作用,其设计旨在解决传统模型在特征融合方面的不足,通过独特的结构原理实现更高效的语义信息和细节融合,从而提升医学图像分割的性能。

2026-02-12 13:20:41 18

原创 YOLO11改进策略【独家融合改进】| RCSOSA + SPD + WFU

SPD-Conv是一种新的 CNN 构建模块,用于替代传统 CNN 架构中使用的步长卷积(strided convolution)和池化(pooling)层,它由空间到深度(Space-to-depth,SPD)层和非步长卷积(non - strided convolution)层组成。WFU模块通过小波变换的频率分解与跨尺度融合机制,解决了传统上采样过程中的混叠和细节丢失问题,实现了高效、高保真的面部细节重建。

2026-02-12 09:05:31 31

原创 YOLOv8改进策略【独家融合改进】| SAFM + SBA + SD Loss

高效图像超分辨率的空间自适应特征调制SBA 模块在医疗图像分割中具有重要作用,其设计出发点是解决图像中物体边界模糊以及融合特征时的冗余和不一致问题。

2026-02-12 09:03:48 16

原创 YOLOv8改进策略【独家融合改进】| WTConv + SDI + DyHead

U-Net V2中的SDI模块在整个网络架构中起着关键作用,其设计旨在解决传统模型在特征融合方面的不足,通过独特的结构原理实现更高效的语义信息和细节融合,从而提升医学图像分割的性能。

2026-02-12 09:03:35 15

原创 YOLOv10改进策略【独家融合改进】| HTB + GFPN + LGAG

解决现有Transformer方法的局限:现有的基于Transformer的方法在处理恶劣天气图像恢复时,为了提高内存利用效率,通常将自注意力操作限制在固定的空间范围或仅仅在通道维度上,这种限制阻碍了Transformer对长距离空间特征的捕捉能力,从而影响了图像恢复的性能。利用天气退化特征:观察到天气引起的退化因素主要导致相似的遮挡和亮度变化,因此希望设计一种能够更好地处理这些特征的模块。

2026-02-12 09:01:07 15

原创 YOLOv10改进策略【独家融合改进】| SAFM + SBA + SD Loss

高效图像超分辨率的空间自适应特征调制SBA 模块在医疗图像分割中具有重要作用,其设计出发点是解决图像中物体边界模糊以及融合特征时的冗余和不一致问题。

2026-02-12 08:59:50 14

原创 YOLO11改进策略【独家融合改进】| EfficientViMBlock + LGAG + DySample

通过学习采样来学习上采样DySample。

2026-02-11 13:10:19 36

原创 YOLOv13改进策略【多YAML融合】| CAFMAttention + CGDown + Conv2Former

本文记录的是利用CAFMAttention + CGDown + Conv2Former改进YOLOv13,分别涉及骨干、颈部和检测头部分的改进。一方面按照此配置,其工作量及创新程度能够满足论文发表的需求,另一方面是一些难以融合多个YAML的举例,以帮助大家理解如何将多个YAML整合到一个YAML中。Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising卷积操作受限于局部性和有限的感受野,在对全局特征建模时存在

2026-02-11 10:52:03 25

原创 YOLOv13改进策略【多YAML融合】| EfficientViM + SHSA + CSFCN

宏观设计层面:传统的高效模型大多采用4×44×44×4的patchify stem和4阶段配置,存在空间冗余,导致早期阶段速度瓶颈且内存访问成本高。研究发现采用更大步长的16×1616×1616×16patchify stem和3阶段设计可减少空间冗余,降低内存访问成本,提高性能。微观设计层面:**多注意力头机制(MHSA)**在计算和应用注意力映射时虽能提升性能,但存在冗余。

2026-02-11 10:51:46 18

原创 YOLOv12改进策略【独家融合改进】| RCSOSA + EUCB + CSFCN

为克服DenseNet中密集连接的低效问题,同时为了在YOLO架构中更好地进行特征提取和信息融合,提高计算效率和检测性能,设计了RCS-OSA模块。

2026-02-11 10:38:58 16

原创 YOLOv12改进策略【独家融合改进】| SimAM + SDI + Detect_MBConv

U-Net V2中的SDI模块在整个网络架构中起着关键作用,其设计旨在解决传统模型在特征融合方面的不足,通过独特的结构原理实现更高效的语义信息和细节融合,从而提升医学图像分割的性能。

2026-02-11 10:37:11 16

原创 YOLO26改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系

本文记录的是利用PSFM 模块改进 YOLO26的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity of

2026-02-11 08:33:28 18

原创 YOLO26改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 YOLO26 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2026-02-11 08:33:16 16

原创 YOLO26改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题

FreqFusion是一种旨在解决密集图像预测任务中特征融合问题。

2026-02-11 08:33:07 15

原创 YOLO26改进策略【Neck】| CVPR 2024 EUCB 高效的上采样卷积块:轻量级上采样 + 深度卷积增强 + 通道匹配

本文记录的是利用EUCB模块对YOLO26的颈部网络进行改进的方法研究。采用传统的标准3×3卷积结合上采样的方法进行特征分辨率匹配与增强,可能因计算成本过高限制模型在资源受限场景的应用,且单纯上采样易导致特征模糊,影响模型在目标检测任务中的特征融合效果。通过“上采样+3×3深度卷积+1×1点卷积”的轻量架构进行特征处理,既能大幅降低计算成本,又能通过深度卷积捕捉局部特征、保留关键语义信息,提升颈部网络特征融合效率与模型检测性能。EMCAD:Efficient Multi-scale Convolutiona

2026-02-11 08:32:59 25

原创 YOLO26改进策略【Neck】| 利用YOLOv13的超图关联增强结构 优化颈部网络 增强多尺度感知

设计目标:解决传统目标检测中局部卷积和成对注意力(pairwise attention)无法建模高阶多对多语义关联的问题(如“人-杯子-桌子”的复杂交互)。代码实现) # 低阶空间分支 (DSConv)self.fuse = FuseModule(c1, channel_adjust) # 多尺度特征融合self.branch1 = C3AH(self.c, self.c, e2, num_hyperedges, context) # 高阶语义分支1。

2026-02-11 08:32:49 14

原创 YOLO26改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO

Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。

2026-02-10 09:07:37 25

原创 YOLO26改进策略【Neck】| 2023 显式视觉中心EVC 优化特征提取金字塔,对密集预测任务非常有效

本文记录的是利用优化YOLO26的目标检测网络模型。利用改进颈部网络,通过和能够同时捕获全局长程依赖和保留局部角落区域信息,在结构简单、体积轻便的同时,提高密集预测任务检测性能。Centralized Feature Pyramid for Object Detection的实现代码如下:四、添加步骤4.1 修改一① 在目录下新建文件夹用于存放模块代码② 在文件夹下新建,将第三节中的代码粘贴到此处在文件夹下新建(已有则不用新建),在文件内导入模块:在文件中,需要在两处位置添加各模块类名称。首先:导

2026-02-10 08:35:39 24

原创 YOLO26改进策略【Neck】| ACMMM 2024 WFU:小波特征上采样 | 通过小波变换的频率分解与跨尺度融合机制,解决传统上采样过程中的混叠和细节丢失问题

WFU模块通过小波变换的频率分解与跨尺度融合机制,解决了传统上采样过程中的混叠和细节丢失问题,实现了高效、高保真的面部细节重建。其轻量化设计和强泛化能力使其成为提升人脸超分辨率模型性能的关键组件,尤其在平衡计算效率与重建质量方面表现突出。

2026-02-10 08:35:07 26

原创 YOLO26改进策略【Neck】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合

本文记录的是利用CGA Fusion 模块改进 YOLO26 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhanc

2026-02-10 08:34:52 30

原创 YOLO26改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度

本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 yolo26的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scale

2026-02-10 08:34:41 30

原创 YOLO26改进策略【Neck】| CVPR2024 LGAG:大核分组注意力门模块,3×3分组卷积与注意力协同的特征精准融合

本文记录的是利用LGAG 模块改进 YOLO26 的颈部融合部分。(Large-kernel Grouped Attention Gate)通过3×3分组卷积与注意力机制结合,引导解码器处理特征与跳接特征的精准融合。本文利用模块,通过3×3分组卷积扩大感受野以捕捉更广泛局部空间上下文,同时结合注意力机制生成自适应注意力系数,对YOLO26中关键目标特征赋予高激活值、抑制冗余背景特征,在特征融合阶段实现全局语义与局部细节的高效结合,减少计算成本的同时提升特征表达能力,增强模型对复杂场景下目标的检测精度与效率。

2026-02-10 08:34:30 30

原创 YOLO26改进策略【Neck】| 关键点检测:CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合

本文记录的是利用CGA Fusion 模块改进 YOLO26的多模态融合部分,专门用于关键点检测。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on deta

2026-02-10 08:34:18 29

原创 YOLO26改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力

颈部结构的设计旨在解决传统信息融合方法的缺陷,提升模型性能。

2026-02-10 08:33:52 26

原创 YOLO26改进策略【Neck】| arXiv 2024 MAFPN:多分支辅助特征金字塔网络 | 通过双向辅助融合与异构卷积机制,解决传统PAFPN多尺度特征融合不充分与小目标检测不足问题

本文记录的是利用MAFPN颈部结构改进YOLO26的目标检测网络模型。通过引入双向辅助融合机制优化特征处理流程,在自底向上路径利用 SAF 模块融合主干浅层特征与颈部输出,并保留浅层空间信息,为小目标检测提供更丰富细节;自顶向下路径通过 AAF 模块建立密集连接,聚合浅层高 / 低分辨率层、同级层及前层特征,均衡各层通道数后实现多向梯度信息交互,增强中 / 大目标特征表达。将其应用到中,解决传统特征金字塔在多尺度信息整合中的不足,提升多尺度目标检测的精度与特征表达的丰富性。Multi-Branch Auxi

2026-02-10 08:33:43 26

原创 YOLO26改进策略【Neck】| ArXiv 2023,基于U - Net v2中的的高效特征融合模块:SDI(Semantics and Detail Infusion)

U-Net V2中的SDI模块在整个网络架构中起着关键作用,其设计旨在解决传统模型在特征融合方面的不足,通过独特的结构原理实现更高效的语义信息和细节融合,从而提升医学图像分割的性能。

2026-02-09 08:35:47 32

指数加权移动平均平滑-Python实现

EWMA赋予每个数据点的权重随时间呈指数式递减,即越靠近当前时刻的数据点权重越大。权重分配是通过一个平滑系数α来实现的。该系数决定了近期数据相对于历史数据的权重比例。较大的α值意味着当前数据点的权重更大,平滑效果更灵敏于近期的变化;而较小的α值则使得平滑结果更加平滑,但可能会引入一定的滞后性。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/qq_42591591/article/details/140851940

2024-10-24

YOLO v10 s模型的导出文件

YOLO v10 s模型的导出文件

2024-10-24

YOLO v10 L模型的导出文件

YOLO v10 L模型的导出文件

2024-10-24

高斯滤波-Python实现

高斯滤波计算滤波窗口内各点相对于中心点的权重。权重分配的原则是:距离中心点越近的点权重越大,距离越远的点权重越小。这样,通过对窗口内各点进行加权平均,可以实现数据的平滑处理。

2024-10-24

Savitzky-Golay滤波-Python实现

选择滤波窗口:首先选择一个合适大小的滑动窗口,这个窗口在数据上滑动,对窗口内的数据进行处理。 多项式拟合:在每个滑动窗口内,使用多项式函数对数据进行最小二乘法拟合。多项式的阶数和窗口大小可以根据数据的特性进行调整,以达到最佳的滤波效果。 计算拟合值:根据拟合得到的多项式函数,计算窗口中心点的估计值,作为滤波后的结果。这个估计值反映了窗口内数据的局部趋势,从而实现了数据的平滑。

2024-10-24

中值滤波算法-Python实现

中值滤波是将窗口内的均值换成中值,进行滤波处理

2024-10-24

移动平均平滑算法-Python实现

移动平均平滑是基于平均值的概念,通过计算序列中每个数据点周围的一定数量的数据点的平均值,来平滑时间序列中的噪声和波动,从而更清晰地观察序列的趋势和周期性。

2024-10-24

卡尔曼滤波算法-Python实现

卡尔曼滤波算法-Python实现

2024-10-24

yolov10m导出的模型文件

yolov10m导出的模型文件

2024-10-24

YOLOv10b的.onnx文件

YOLO v10模型导出文件

2024-10-24

RT-DETR官方最新源码资源

YOLO 系列由于在速度和准确性之间进行了合理的权衡,已成为最流行的实时目标检测框架。然而,我们观察到 YOLO 的速度和准确性会受到非极大值抑制(NMS)的负面影响。最近,基于端到端 Transformer 的检测器(DETRs)为消除 NMS 提供了一种替代方案。尽管如此,高计算成本限制了它们的实用性,并阻碍了它们充分发挥排除 NMS 的优势。在本文中,我们提出了实时检测 Transformer(RT-DETR),据我们所知,这是第一个解决上述困境的实时端到端目标检测器。我们分两步构建 RT-DETR,借鉴先进的 DETR:首先我们专注于在提高速度的同时保持准确性,然后在保持速度的同时提高准确性。具体来说,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来快速处理多尺度特征,从而提高速度。然后,我们提出最小不确定性查询选择,为解码器提供高质量的初始查询,从而提高准确性。

2024-10-24

小波卷积论文:Wavelet Convolutions for Large Receptive Fields

小波卷积(Wavelet Convolutions)是一种在卷积神经网络(Convolutional Neural Networks, CNNs)中用于增加感受野(Receptive Field)同时避免过度参数化的方法。 WT 是一种时频分析工具,本文采用 Haar WT,它可以在保留一定空间分辨率的情况下对信号进行分解。通过将 WT 与卷积操作相结合,提出了 WTConv 层。 小波卷积首先对输入进行小波变换,将其分解为不同频率的子带,如通过与特定的卷积核进行深度可分离卷积实现一级 Haar WT,得到低频分量和多个高频分量。然后在不同的频率子带上进行小卷积核的卷积操作,这些小卷积核可以在更大的原始输入区域上操作,从而增加感受野。最后通过逆小波变换(IWT)将处理后的频率子带组合起来得到输出。

2024-10-24

社团管理系统

基于NetBeans的社团信息管理系统,支持社团信息的查询、修改、增加。并能根据调用数据库进行一系列的操作。

2019-01-09

基于java的社团信息管理系统

通过“javaApplication”,直接输出社团简单的操作信息。

2018-12-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除