积沙成塔
题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
算法分析与实现:
由于每次只能跳一阶或者两阶,所以存在两种情况,当在最后一跳跳了两阶的话,则条n节和跳n-2阶的跳法相同,如果最后一跳跳一阶则跳n节和跳n-1阶的跳法相同。所以根据分类加法的原则的f(n)=f(n-1)+f(n-2)
public class QWJump {
public int JumpFloor(int target) {
if(target==1)
return 1;
if(target==2)
return 2;
int floorone=1;
int floortwo=2;
int result=0;
for(int i=3;i<=target;i++){
result=floorone+floortwo;
floorone=floortwo;
floortwo=result;
}
return result;
}
}
题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析与实现:由于每次可以跳1~n阶,也就是说这只牛逼的青蛙可以从任何一个台阶一次跳到最高阶。所以他有可能和n-1,n-2,n-3......1的跳法相同。同理的如下解析式:
F(n) = F(n-1)+F(n-2)+...+F(1)
F(n-1) = F(n-2)+F(n-3)+...+F(1)
两个式子相减,很容易得出F(n)=2F(n-1)。有解析式我们可以看出,这可以用递归来实现。
public int JumpFloorII(int target) {
int result=0;
if(target==0){
result=0;
}else if(target==1) {
result=1;
}else{
result=2*JumpFloorII(target-1);
}
return result;
}