poj 1659

本文深入探讨了Havel算法的原理与应用,通过实例详细解释了如何使用该算法判断一个序列是否可以构成简单图,并提供了完整的C++代码实现。通过对序列进行排序和逐个元素的调整,算法能够有效检测序列的图属性。
摘要由CSDN通过智能技术生成

题目大意就是判断可不可图,另外输出。

思路:

havel算法,先排序,然后去掉最大的点比如值为x,并将后面的x个点全部减一,如果出现负数则说明不可图,如果全部变成0则证明可图。代码如下:

#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#define maxn 100

using namespace std;

typedef struct
{
	int d, num;
} point;

int v[maxn][maxn];

bool cmp(point a, point b)
{
	if(a.d>b.d)
		return true;
	return false;
}

point p[maxn];

int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;

		for(int i=0; i<n; ++i)
		{
			p[i].num = i;
			cin>>p[i].d;
		}
		bool flag = false;
		memset(v,0,sizeof(v));
		for(int i=0; i<n; ++i)
		{
			sort(p+i,p+n, cmp);
			if(p[i].d>=n)
			{
				flag = true;
				break;
			}
			if(p[i].d == 0)
				break;
			for(int j = i+1; j<=i+p[i].d; ++j)
			{
				if(p[j].d == 0)
				{
					flag = true;
					break;
				}
				p[j].d--;
				v[p[i].num][p[j].num] = 1;
				v[p[j].num][p[i].num] = 1;
			}
			if(flag)
				break;
		}
		if(flag)
			cout<<"NO"<<endl;
		else
		{
			cout<<"YES"<<endl;
			for (int i = 0; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					if (j == 0)
						cout<<v[i][j];
					else
						cout<<" "<<v[i][j];
				}
				cout<<endl;
			}
		}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值