HDU 1395

本文探讨了如何求解一个数学问题:找到最小的正整数x,使得2的x次方模n等于1。文章通过分析指出,当n为1或偶数时无解;当n为奇数时,可通过直接计算得到答案。代码使用C++实现,采用暴力搜索的方法,在每一步中更新t=(t*2)%n,直到t%n等于1。
摘要由CSDN通过智能技术生成

题意是求一个最小的正整数x, 令 2^x%n = 1。这里显然当n=1或者为偶数时是无解的,即输出-1。而当n为奇数时则可以根据欧拉函数来求解。即当为奇数的时候必有解。一开始还想各种操作,结果暴力可以直接过。。。

#include<iostream>
#include<string>
#include<algorithm>

using namespace std;

int main()
{
	long long n;
	while(cin>>n)
	{
		if(n%2 == 0 || n==1)
			printf("2^? mod %lld = 1\n",n);
		else
		{
			long long ans = 1, t=2;
			while(t%n != 1)
			{
				t = (t*2) % n;
				ans++;
			}
			printf("2^%lld mod %lld = 1\n",ans,n);
		}
	}
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值