部署Video-LLama遇到的坑

本文讲述了在Linux环境下使用Conda和Python3.10下载HuggingFace的video-llama模型时遇到的问题,如网络限制、损坏文件、镜像站点选择、版本兼容性问题以及模型文件路径设置。作者提供了详细的解决步骤和注意事项,包括使用ModelScope镜像和正确处理requirements.txt中的版本问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:linux,conda,python 3.10

下载:下载时首先在中国直接拉去huggingface的git链接很大概率上实行不同的因为被ban了,如果想下载只能找镜像网站。镜像网站比如modelscope就非常好用,魔搭社区网速非常快!我这边使用的是modelscope镜像网站下载的video-llama模型文件和checkpoint。

from modelscope import snapshot_download, AutoModelForCausalLM, AutoTokenizer,GenerationConfig
model_dir = snapshot_download("damo/videollama_7b_llama2_finetuned", revision='v0.1.1')

但是这里有一个坑,下载的文件部分是损坏的,我调试了一整天才发现这个问题实在是太坑了!而且有一些git链接是个假链接,就是你直接git clone不能够下载到你想要的文件,他会给个假文件给你,这里奉劝大家下载模型的时候一定要对比仔细!!

版本问题:video-llama由于快速迭代有一些依赖包的一些方法被弃用了,这导致你直接pip install -r requirements.txt所下载的东西无法使用!主要原因就是因为requirements.txt没有指定相应的版本号,这里给达摩院出的这个video-llama文档和代码都给差评!我因为这个问题估计耗了5个小时后面反复降级才能够用。

下面是我自己标注了版本号的requirements.txt文件,你们直接复制过去拿着用就可以了!官方给的文档很多都没给后面带版本!不带版本的话默认就是下载最新的,但是最新的版本很多方法都弃用了!绝对天坑!

tqdm
decord
timm
einops
opencv_python==4.8.0.74
torchvision==0.14.0
torch==1.13.0
bitsandbytes
omegaconf
iopath
webdataset
ftfy
SentencePiece
transformers==4.28.0
gradio==3.24.1
pytorchvideo
gradio-client==0.0.8
torchaudio

另外加一句python版本不要用3.11,直接使用3.9或者3.10不要用最新不要用最新不要用最新!

模型下载路径:这是最大的天坑,默认下载在root的cache下/root/.cache/modelscope/modelscope_modules。这个是Linux的路径其他操作系统我不知道,但是你最好直接下载好之后不要动了!因为模型里面有很多方法调用文件的时候是写的绝对路径,是的你没听错!就是写的绝对路径!你只要移动一点点,他就不能用了。。。所以你使用snapshot_download下载好之后不要随便动他的路径了!



上述坑基本上每个人至少都会碰到一个,同组的很多人都有类似的问题,为了节省大家宝贵的时间希望这些解决办法对你们有用。

<think>好的,我现在需要帮助用户了解如何进行VideoChat系统的本地部署。首先,我得回忆一下用户提到的引用内容,特别是引用[2]中提到的Video-LLaMa部署过程,可能相关。用户想要具体的步骤教程,所以我应该分步骤解释,结构要清晰。 首先,本地部署通常需要环境准备,比如Python环境、必要的库和依赖项。可能需要提到安装Anaconda或者虚拟环境来管理依赖,避免版本冲突。然后,可能需要下载源码,比如从GitHub上获取项目的代码仓库,用户可能不熟悉git命令,需要简单说明。 接下来是模型下载。VideoChat或Video-LLaMA这类项目通常依赖预训练的大模型,用户需要知道从哪里获取这些模型,比如Hugging Face Hub或者官方提供的链接。这里需要注意模型文件可能较大,下载需要时间,要提醒用户耐心等待。 然后是配置文件的修改。很多项目需要根据本地路径调整配置文件中的路径设置,比如模型路径、数据集路径等。可能需要指导用户如何编辑YAML或JSON文件,确保路径正确。 依赖安装部分,需要列出必要的Python包,比如torch、transformers、decord等。用户可能遇到依赖版本不兼容的问题,建议使用项目提供的requirements.txt文件安装指定版本。 运行部分,可能需要给出示例命令,比如运行demo脚本或启动服务。同时,要提醒用户检查CUDA和cuDNN的版本,确保GPU加速可用,这对大模型推理很重要。 另外,用户提到的引用[2]中有提到部署过程的实战资料,可能需要建议用户参考这些资料,或者提供获取途径,比如扫描获取录播视频等。但要注意不要直接提供外部链接,而是引导用户根据已有的引用信息去查找。 可能会遇到的问题包括环境配置错误、依赖冲突、模型路径不正确、显存不足等。需要给出常见问题解决方法,比如检查CUDA版本、降低批量大小、使用CPU模式(虽然慢)等。 最后,确保回答符合系统级指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$(虽然这里可能用不上),生成相关问题,引用标注正确。同时,用户希望回答真实可靠,结构清晰,分步骤说明。 现在需要把这些思考整理成步骤,并生成相关问题。确保每个步骤明确,语言简洁,同时引用提到的资料,比如在步骤中或注意事项里提到引用[2]中的部署经验。</think>### VideoChat系统本地部署方法 #### 一、环境准备 1. **Python环境**:推荐使用$Python\ 3.8+$,建议通过Anaconda创建虚拟环境: ```bash conda create -n videochat python=3.8 conda activate videochat ``` 2. **CUDA与cuDNN**:若使用GPU加速,需安装与显卡驱动匹配的CUDA(如$11.7$版本)和cuDNN[^2]。 #### 二、代码与模型获取 1. **克隆代码仓库**: ```bash git clone https://github.com/[项目仓库路径]/VideoChat.git ``` 2. **下载预训练模型**: - 模型文件通常从Hugging Face Hub或官方渠道获取,例如: ```bash wget https://huggingface.co/[模型路径]/videochat-model.bin ``` #### 三、依赖安装 安装项目所需库(示例): ```bash pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 pip install -r requirements.txt # 包含transformers, decord, opencv-python等[^2] ``` #### 四、配置文件修改 修改`configs/videochat.yaml`中的路径参数: ```yaml model_path: "./models/videochat-model.bin" data_dir: "./dataset/" ``` #### 五、启动服务 运行示例脚本: ```bash python demo.py --input_video test.mp4 --prompt "描述视频内容" ``` #### 六、注意事项 1. **显存要求**:模型推理需至少$16$GB显存,若不足可尝试量化版本或CPU模式。 2. **依赖冲突**:若出现版本问题,建议使用虚拟环境隔离。 部署过程可参考Video-LLaMa的实战经验,包括环境调试和性能优化技巧。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值