矩阵理论之线性代数基础(一)

一、线性空间和子空间的基本概念

数域:对加减乘除运算封闭,包含0,1的所有数称为数域。

线性空间:设V是一个非空集合,P是一个数域,在V中定义了一种代数运算加法,使得对于V中任意两元 α , β \alpha,\beta α,β,在V中都有唯一的一个元 v v v与之对应,称为 v v v α \alpha α β \beta β的和,记 v = α + β v=\alpha+\beta v=α+β。在P中还对应一种数乘运算,对于P中任一数 k k k与V中任一元 α \alpha α相乘,在V中都有唯一元 δ \delta δ与之对应,记为 δ = k ∗ α \delta=k*\alpha δ=kα。如果加法与数乘满足下列规则:

  • α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
  • ( α + β ) + v = α + ( β + v ) (\alpha+\beta)+v=\alpha+(\beta+v) (α+β)+v=α+(β+v)
  • ∃ 0 ∈ V , ∀ α ∈ V , α + 0 = α \exist 0 \in V, \forall \alpha \in V, \alpha+0=\alpha 0V,αV,α+0=α,这里0元素不一定是数值上的1,不同空间有不同的零元素。
  • ∀ α ∈ V , ∃ β ∈ V , α + β = 0 \forall \alpha \in V, \exist \beta \in V, \alpha+\beta=0 αV,βV,α+β=0
  • 1 α = α 1\alpha=\alpha 1α=α
  • k ( l α ) = ( k l ) α k(l\alpha)=(kl)\alpha k(lα)=(kl)α
  • ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
  • k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
    则称V是数域P上的线性空间(向量空间)。
    TIPs:线性空间一定要满足加法和数乘这八条性质。线性空间对加法和数乘封闭。

线性空间维数定义:在线性空间V中存在n个线性无关的向量 α 1 , ⋯   , α n \alpha_1,\cdots,\alpha_n α1,,αn,而V中任意n+1个向量都线性相关,则V是n维的线性空间, α 1 , ⋯   , α n \alpha_1,\cdots,\alpha_n α1,,αn称为V的一组基。 d i m V = n dimV=n dimV=n

子空间:设V是一个线性空间,W是V的一非空子集,W关于V的加法和数乘也构成一个线性空间,则称W是V的线性子空间。非零线性子空间至少有两个子空间,零子空间 { 0 } \{0\} {0}和它本身。 d i m W < d i m V dimW<dimV dimW<dimV
TIPs:证明线性空间W和V相同只需要证明二者维度相同即可。
一些结论:两个字空间的交集仍是子空间,两个在空间的交集不一定是子空间

二、矩阵分类

1、对称矩阵( A = A T A=A^T A=AT)

a i j = a j i a_{ij}=a_{ji} aij=aji

2、反对称矩阵( A = − A T A=-A^T A=AT)

a i j = − a j i a_{ij}=-a_{ji} aij=aji

3、hermite矩阵( A = A H A=A^H A=AH)

a i j = a j i ‾ a_{ij}=\overline{a_{ji}} aij=aji,复数域的对称矩阵

4、反hermite矩阵( A = − A H A=-A^H A=AH)

a i j = − a j i ‾ a_{ij}=-\overline{a_{ji}} aij=aji,复数域的反对称矩阵

5、正交矩阵( A A T = E AA^T=E AAT=E)

6、酉矩阵( A A H = E AA^H=E AAH=E)

复数域的正交矩阵

7、对角矩阵

除对角线元素全为0的矩阵

三、空间分解和维数定理

\quad V 1 , V 2 V_1,V_2 V1,V2是线性空间 V V V的线性子空间,则 d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V_1 ∩ V_2) dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)
证明:设 d i m ( U ) = s , d i m ( W ) = t , d i m ( U ∩ W ) = r dim(U)=s,dim(W)=t,dim(U∩W)=r dim(U)=s,dim(W)=t,dim(UW)=r
任取 U ∪ W U∪W UW的一组基 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,,αr
U U U的一组基是 α 1 , α 2 , ⋯   , α s , β 1 , ⋯   , β s − r \alpha_1,\alpha_2,\cdots,\alpha_s,\beta_1,\cdots,\beta_{s-r} α1,α2,,αs,β1,,βsr
W W W的一组基是 α 1 , α 2 , ⋯   , α s , γ 1 , ⋯   , γ t − r \alpha_1,\alpha_2,\cdots,\alpha_s,\gamma_1,\cdots,\gamma_{t-r} α1,α2,,αs,γ1,,γtr
α 1 , α 2 , ⋯   , α s , β 1 , ⋯   , β s − r γ 1 , ⋯   , γ t − r \alpha_1,\alpha_2,\cdots,\alpha_s,\beta_1,\cdots,\beta_{s-r}\gamma_1,\cdots,\gamma_{t-r} α1,α2,,αs,β1,,βsrγ1,,γtr U + W U+W U+W的一组基。

  • 和空间的维数往往比空间维数的和小

四、相似矩阵

\quad 存在可逆矩阵 P P P,使得 B = P − 1 A P B=P^{-1}AP B=P1AP,则 A , B A,B A,B想似,具有相同的特征值和相同的行列式和相同的迹

五、矩阵的迹

\quad 矩阵的迹为矩阵主对角线元素和, t r ( A ) = ∑ i n a i i = ∑ i n λ i tr(A)=\sum_i^na_{ii}=\sum_i^nλ_i tr(A)=inaii=inλi

  • tr(AB)=tr(A)+tr(B)
  • t r ( A A T ) = ∑ i , j = 1 n ∣ a i j ∣ 2 tr(AA^T)=\sum_{i,j=1}^n |a_{ij}|^2 tr(AAT)=i,j=1naij2

六、投影矩阵

\quad V 1 , V 2 V_1,V_2 V1,V2均是 V V V的子空间,且 V 1 + V 2 = V V_1+ V_2=V V1+V2=V , x ∈ V , y ∈ V 1 , z ∈ V 2 x\in V, y \in V_1, z \in V_2 xV,yV1,zV2,则 x x x变为沿着 V 2 V_2 V2 V 1 V_1 V1的投影变换称为 V 2 V_2 V2 V 1 V_1 V1的投影算子,记为 T T T,即 T x = y Tx=y Tx=y。投影算子 T T T将整个空间 V V V变到子空间 V 1 V_1 V1
\quad 一个重要性质 T 2 = T T^2=T T2=T,即 T T T是幂等算子
\quad 幂等矩阵的性质

  • A H A^H AH I − A I-A IA也是幂等矩阵
  • A A A的特征值非0即1
  • r a n k ( A ) = t r ( A ) rank(A)=tr(A) rank(A)=tr(A)
  • A ( I − A ) = ( I − A ) A = 0 A(I-A)=(I-A)A=0 A(IA)=(IA)A=0
  • A x = x , x ∈ R ( A ) Ax=x,x \in R(A) Ax=x,xR(A)
  • N ( A ) = R ( I − A ) , R ( A ) = N ( I − A ) N(A)=R(I-A),R(A)=N(I-A) N(A)=R(IA),R(A)=N(IA)

七、特征值

特征值性质

  • 矩阵A的行列式的值等于其所有特征值的积
  • 矩阵A可逆与0不是A的特征值等价

特征向量的性质

  • 属于不同特征值的特征向量线性无关
  • n阶方阵A可以对角化等价于A有n个线性无关的特征向量,等价于几何重数等于代数重数
  • 当几何重数小于代数重数时,不能对角化,但能块对角化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值