矩阵理论:第一章 线性代数基础

研一这学期要学矩阵论了,然而我发现我啥都不会,上课一头雾水,下课看书划水,见到线代老师羞愧难当,原地炸裂。
这是 电子科技大学黄廷祝的《矩阵理论》教材,此文章充当该门课的笔记。
在这一本书里,基本上所有的希腊字母都用来表示向量。

§1 线性空间和子空间

这章写的着实都是抽象话,看的我都射了。

定义1 啥是线性空间

用了极其繁琐的方式定义了啥是 线性空间。
我看知乎上有句话说得好:

你要想玩代数游戏,就必须要有游戏规则和场地范围。

线性空间中间包含了游戏规则(加法和数乘),还有场地范围(一个数域(一个四则运算封闭数集))。

定义2 基底特性

在线性空间 V V V中,如果有 n n n个向量 ϵ 1 , ϵ 2 , . . . ϵ n \epsilon_1,\epsilon_2,...\epsilon_n ϵ1,ϵ2,...ϵn线性无关,而 V V V中任意 n + 1 n+1 n+1个向量线性相关,则称 ϵ 1 , ϵ 2 , . . . ϵ n \epsilon_1,\epsilon_2,...\epsilon_n ϵ1,ϵ2,...ϵn为空间 V V V的一组基底。称 n n n V V V的维数,记为 d i m   V = n dim\ V=n dim V=n.

任意一个线性空间的基底总含有相同数目的向量!

定义3 子空间

定义大意是,你在我的场地中(在这个数域的子集中),能用我的规则(可以使用运算),你就是我的子空间。

§2 空间分解和维数定理

定义1 子空间的和

V 1 , V 2 V_1,V_2 V1,V2 V V V的子空间,则 V 1 + V 2 V_1+V_2 V1+V2就是所有能表示成 α 1 + α 2 ( α 1 ∈ V 1 , α 2 ∈ V 2 ) \alpha_1+\alpha_2 (\alpha_1\in V_1, \alpha_2\in V_2) α1+α2(α1V1,α2V2)的向量的集合。

定义2 直和(Direct sum)

V 1 , V 2 V_1,V_2 V1,V2是线性空间 V V V的子空间,若对 ∀ α ∈ V 1 + V 2 \forall\alpha\in V_1+V_2 αV1+V2,有 α = α 1 + α 2 ( α 1 ∈ V 1 , α 2 ∈ V 2 ) \alpha=\alpha_1+\alpha_2(\alpha_1\in V_1, \alpha_2\in V_2) α=α1+α2(α1V1,α2V2)
V 1 ⊕ V 2 V_1\oplus V_2 V1V2,称为 V 1 + V 2 V_1+V_2 V1+V2为直和

定理1 维数定理

d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V_1\cap V_2) dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)

这个定理有点像容斥原理,证明比较长:维数定理的证明.

定理2 直和的等价命题

(1) V 1 ⊕ V 2 V_1 \oplus V_2 V1V2
(2)零向量表示方法唯一。若 0 = ϵ 1 + ϵ 2 0=\epsilon _1+\epsilon_2 0=ϵ1+ϵ2,必 ϵ 1 = 0 , ϵ 2 = 0 \epsilon _1=0,\epsilon_2=0 ϵ1=0ϵ2=0.
(3) V 1 ∩ V 2 = { 0 } V_1 \cap V_2=\{0\} V1V2={0}

定理3 推广的直和的等价命题

(1) W = Σ V i W=\Sigma V_i W=ΣVi是直和。
(2)零向量表示方法唯一。
(3) V i ∩ ( Σ j ≠ i V j ) = 0 , 1 ≤ i ≤ s V_i\cap(\Sigma_{j\neq i }V_j)={0},1\leq i \leq s Vi(Σj=iVj)=0,1is
(4) d i m ( W ) = Σ d i m ( V i ) dim(W)=\Sigma dim(V_i) dim(W)=Σdim(Vi)

§3 商空间

从这一节开始,字数有点爆炸,开始略写。

定义1 同余

α ∈ V \alpha\in V αV,如果 α ′ ∈ V \alpha'\in V αV满足 α − α ′ ∈ M \alpha-\alpha' \in M ααM, 则称 α ′ \alpha' α α \alpha α同余,记 α ′ ≡ α ( m o d   M ) \alpha'\equiv\alpha(mod\ M) αα(mod M)
在数论中,同余的定理如下:

给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。

实际上把整数推广到向量空间,哎,味就对了。

性质1~3 同余的性质

其拥有反身(自己对自己),对称(两边可交换),传递(套娃)律。

定义2 同余类

α ∈ V \alpha \in V αV,则 V V V的子集 α + M = { a + m ∣ m ∈ M } \alpha +M =\{a+m|m\in M\} α+M={a+mmM}内的任意一个向量必与 α \alpha α M M M同余;也就是说与 α \alpha α M M M同余的向量必属于 α + M \alpha+M α+M
。我们称 α + M \alpha+M α+M为一个模 M M M的同余类,称 α \alpha α为这个同余类的代表。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值