一、生成树的概念和性质
\quad 定义:图G的一个生成子图T如果是树,称它为G的一棵生成树;若T为森林,称它为G的一个生成森林。(生成子图:包含原图所有顶点,边不管)
- 生成树不唯一
- 生成树的边称为树枝,G中非生成树的边称为弦
1、每个连通图至少包含一棵生成树
\quad 证明:如果连通图G是树,则其本身是一棵生成树;若连通图G中有圈C,则去掉C中一条边后得到的图仍然是连通的,这样不断去掉G中圈,最后得到一个G的无圈连通子图T,它为G的一棵生成树。
二、生成树的计数
1、凯莱递推计数法
\quad
设
e
e
e是图
G
G
G的一条边,
τ
(
G
)
τ(G)
τ(G)为
G
G
G生成树个数,则
τ
(
G
)
=
τ
(
G
−
e
)
+
τ
(
G
⋅
e
)
τ(G)=τ(G-e)+τ(G·e)
τ(G)=τ(G−e)+τ(G⋅e)
\quad
其中,
G
⋅
e
G·e
G⋅e是指删掉e后,把e的两个端点重合,如此得到的图记为
G
⋅
e
G·e
G⋅e。缺点是计算量大(指数级),且不能具体指出每棵生成树。
2、关联矩阵计数法
3、矩阵树方法
\quad
设
D
(
G
)
D(G)
D(G)为图的度对角矩阵,
A
(
G
)
A(G)
A(G)为图的领接矩阵,则
C
=
D
(
G
)
−
A
(
G
)
C=D(G)-A(G)
C=D(G)−A(G)的任意一个余子式的值即为图
G
G
G的生成树个数。
C
C
C也成为拉式矩阵。
举个例子:
\quad
则上图生成树个数为3。
\quad
完全图
k
n
k_n
kn的生成树个数为
n
n
−
2
n^{n-2}
nn−2。
\quad
若e为
K
n
K_n
Kn的一条边,则:
τ
(
K
n
−
e
)
=
(
n
−
2
)
n
n
−
3
τ(K_n-e)=(n-2)n^{n-3}
τ(Kn−e)=(n−2)nn−3
证明:
K
n
K_n
Kn有
n
n
−
2
n^{n-2}
nn−2个生成树,生成树总边数为
(
n
−
1
)
n
n
−
2
(n-1)n^{n-2}
(n−1)nn−2,意味着每条边对应生成树个数为
(
n
−
1
)
n
n
−
2
1
2
n
(
n
−
1
)
=
2
n
n
−
3
\frac{(n-1)n^{n-2}}{\frac{1}{2}n(n-1)}=2n^{n-3}
21n(n−1)(n−1)nn−2=2nn−3,因此去除一条边后
τ
(
K
n
−
e
)
=
n
n
−
2
−
2
n
n
−
3
=
(
n
−
2
)
n
n
−
3
τ(K_n-e)=n^{n-2}-2n^{n-3}=(n-2)n^{n-3}
τ(Kn−e)=nn−2−2nn−3=(n−2)nn−3。
三、编程实现矩阵树方法
\quad 实现方法很简单,第一步是构建拉氏矩阵,很简单。难点在于实现求行列式的值。我这里采用矩阵初等变换将矩阵转化为上三角矩阵,这样行列式的值就等于主对角元素乘积。我实现了打印拉氏矩阵C和输出图生成树个数这两个方法,主体程序如下:
#include<bits/stdc++.h>
using namespace std;
class spanningTreeNum {
private:
int V = 0; // 顶点数
vector<vector<int> > c; // 拉式矩阵c=d-A
public:
spanningTreeNum(int V)
{
this->V = V;
c = vector<vector<int> >(V, vector<int>(V, 0)); //初始化二维矩阵c为0
}
void addEdge(int u, int v); // u和v之间加一条边
int getTreeNum();
int det(vector<vector<float> > A); // 求行列式A的值
void showC();
};
void spanningTreeNum::addEdge(int u, int v) {
c[u][u]++; // 顶点度数加一
c[v][v]++;
c[u][v] = -1; // 表示顶点u、v之间有一条边,因为c=d-A,所以为-1
c[v][u] = -1;
}
int spanningTreeNum::det(vector<vector<float> > A) {
/*
* 思路是将利用初等变换A转化为上三角矩阵,这样对角线元素乘积即为行列式值
*/
float res = 1;
int iter = 0; // 记录交换次数
for (int i = 0; i < A.size(); ++i) {
if(A[i][i]==0)
{
for (int j = i; j < A.size(); ++j) {
if(A[j][i]!=0) {
swap(A[i], A[j]);
iter++;
}
}
}
for (int j = i+1; j < A.size(); ++j) {
float temp = -A[j][i]/A[i][i];
for (int k = 0; k < A[j].size(); ++k) {
A[j][k] = A[i][k]*temp+A[j][k];
}
}
}
for (int i = 0; i < A.size(); ++i) {
res *= A[i][i];
}
if(iter%2==1) res = -res;
return (int)res;
}
int spanningTreeNum::getTreeNum() {
// 求余子式
vector<vector<float > > temp(V-1, vector<float >(V-1, 0));
for (int i = 1; i < V; ++i) {
for (int j = 1; j < V; ++j) {
temp[i-1][j-1] = c[i][j];
}
}
return det(temp);
}
void spanningTreeNum::showC() {
for (int i = 0; i < c.size(); ++i) {
for (int j = 0; j < c[i].size(); ++j) {
printf("%3d ", c[i][j]);
}
cout << endl;
}
}
\quad
以下图为例,我们来测试下程序
int main()
{
spanningTreeNum G(4);
G.addEdge(0, 1);
G.addEdge(0, 2);
G.addEdge(1, 2);
G.addEdge(2, 3);
cout << "拉氏矩阵为:" << endl;
G.showC(); //打印拉式矩阵C
cout << "生成树个数为:" << G.getTreeNum() << endl; // 打印生成树个数
return 0;
}
\quad
运行结果: