原题目链接HDU2553
分类
HDU 搜索 DFS 打表
题意
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
样例输入输出
Sample Input
1
8
5
0
Sample Output
1
92
10
想法
DFS , 求N皇后有多少种方法,只能试探性的在每个位置暴力搜,用一个一维数组map[i],表示i行皇后位置,可减少判断。会超时,所以先打表
注:map[i] = 5 表示第i个皇后在地图上是(i,5)的位置
dfs(x,m)是总共m个皇后,正在安排第x个皇后的位置
代码
15ms
#include<bits/stdc++.h>
#define maxn 11
using namespace std;
int Map[maxn],a[maxn];
int cnt,m;
bool check(int x,int y){//检测(x,y)位置是否可用
for(int i=1;i<x;i++){
if(y==Map[i] || abs(x-i)==abs(y-Map[i]))
return false;
}
return true;
}
void dfs(int x,int m){
if(x>m){//安排好了全部皇后
cnt++;
return;
}
for(int i=1;i<=m;i++){
if(check(x,i)){
Map[x] = i;//纪录第 x 个皇后的纵坐标为 i
dfs(x+1,m);
}
}
}
int main()
{
a[0] = 0;
for(int i=1;i<=10;i++){//防止超时,打表
cnt = 0;
dfs(1,i);
a[i] = cnt;
}
while(~scanf("%d",&m)&&m){
printf("%d\n",a[m]);
}
return 0;
}