MATLAB中的rand()和randn()函数

在Matlab中,rand是0-1的均匀随机分布,而randn是均值为0方差为1的正态分布。

1.rand()是0-1的均匀随机分布

介绍

例子

举个例子:X = rand 产生一个在(0,1)区间内的随机数。

X = rand(n)或X = randn(n)产生一个n*n的随机变量矩阵。

X = rand(m,n)或X = randn(m,n)产生一个m*n的随机变量矩阵。

2.randn()是均值为0方差为1的标准正态分布

介绍

例子

3.正态分布(Normal Distribution)

  正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线

随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布

 

3.1 正态分布标准化变换

3.2 正态分布公式

3.3 正态分布性质

3.4 正态分布的应用

  1. 1.频数分布以及概率估计。
  2. 2.制定参考值范围,包括正态分布法和百分位数法。
  3. 3.质量控制,SPC技术应用的核心。
  4. 4.正态分布是检验、方差分析、相关和回归分析等多种统计方法的理论基础。

3.5 中心极限定理(Central Limit Theorem)

中心极限定理指的是给定一个任意分布的总体。我每次从这些总体中随机抽取 n 个抽样,对这n个抽样取平均值,总共抽取关计算 m 次。 则这m个平均值数据分布接近正态分布。正态分布的直观理解请参考正态分布初步理解

4.正态分布MATLAB画法

首先给出正态分布概率密度函数(The normal distribution probability density function)的公式和标准正态分布概率密度函数的公式,然后通过normpdf( )生成标准正态分布概率密度函数的数据,然后通过plot( )绘制标准正态分布概率密度函数的图形。

4.1 正态分布概率密度函数的公式如下图。其中,μ为平均值(mean),σ为标准差(standard deviation)。

4.2 当μ=0,σ=1时,第一步中的正态分布为标准正态概率密度函数,如下图。

4.3 启动MATLAB,新建脚本(Ctrl+N),输入如下代码:

其中normpdf(x,0,1)是用来产生μ=0,σ=1的标准正态分布概率密度函数的数据。

close all; clear all; clc

x=-1:.1:1;

norm=normpdf(x,0,1);

figure('Position',[50,50,600,500],'Name','Normal PDF',...

    'Color',[1,1,1]);

plot(x,norm,'r-','LineWidth',3)

set(gca,'FontSize',10,'TickDir','out','TickLength',[0.02,0.02])

xlabel('X','FontSize',15);ylabel('PDF','FontSize',15)

4.4 保存和运行上述脚本,在工作区(Workspace)得到标准正态分布概率密度函数的数据norm,双击norm可以查看数据具体内容。

4.5  同时得到如下μ=0,σ=1的标准正态分布概率密度函数图形。

具体请参考MATLAB绘制正态分布

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值