MOEA/D

MOEA/D简介:

基于分解的多目标进化算法。该方法将一个多目标优化问题分解为一组单目标优化问题或多个多目标子问题,利用子问题之间的邻域关系,通过协作方式同时优化所有子问题,从而找到整个Pareto面的逼近。通常子问题的定义由权重向量确定,子问题间的邻域关系是通过计算权重向量之间的欧氏距离来确定的。

MOEA/D特征:

1 MOEA/D提供了一个简单但是有效的方法,那就是将分解的方法引入到多目标进化计算中。

2 由于MOEA/D算法同时优化N标量子问题而不是直接将MOP作为一个整体来解决,对于不基于分解的MOEA算法来说适应度分配和多样性控制的难度在MOEA/D框架中得到降低。

3 MOEA/D算法相比NSGA-Ⅱ和MOGLS有较低的计算复杂度。

4.目标归一化技术可以被纳入MOEA / D以处理不同规模/比例的目标。(因为在实际问题中,不同目标函数的值之间的差距可能会非常大,不能简单地直接将它们聚合,要先归一化)

5 .由于在MOEA/D中每个解都和标量优化问题有关,所以使用标量优化方法很自然。相反,对于传统的不是基于分解的MOEA算法的一个主要缺点就是没有一个简单的方法来充分利用标量优化算法。

分解策略中常用的三种聚合函数:

!!!对于后面两种聚合方法,目前还不是很理解,看不懂图,所以就一带而过,待我查资料弄明白之后再总结。

1.权重聚合方法(weighted sum approach):一种常用的线性多目标聚合方法
对于最小化问题,真实PF为凸面时,处理效果理想;非凸面时,处理效果不好。
对于最大化问题,真实PF为凹面时,处理效果理想;非凹面时,处理效果不好。
在这里插入图片描述
2.切比雪夫方法(Tchebycheff approach):一种的非线性多目标聚合方法

3.基于惩罚的边界交叉方法(penalty-based boundary intersection approach)

MOEA/D算法步骤:

在这里插入图片描述

发布了2 篇原创文章 · 获赞 5 · 访问量 4554
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览