PlatEMO 用户手册 学习笔记

addpath(fileparts(which(class(obj))));

Matlab的which函数——查找文件路径 用法:
which(‘aaa’)(查找文件名为aaa的文件的路径)
比如输出路径为:E:\ toolbox\ matlab\ myDIYfile\ aaa.m

需要注意:
(1)当要查找的文件路径中,三层及以上的母文件夹名字中有大写字母时,它的输出路径中会将大写字母变成小写字母,比如用which查找ccc的路径,它会输出:E:\ toolbox\ matlab\ mydiyfile\ a\ b\ ccc.m其中文件夹myDIYfile已经变成mydiyfile。
(2)在matlab中,并不区分路径中的大小写字母,比如 输入命令 cd E:\ toolbox\ matlab\ mydiyfile\ a\ b 和命令cd E:\ toolbox\ matlab\ myDIYfile\ a\ b都会进入到b这个文件夹中。
(3)但是,当将两个路径作为字符串进行对比时,比如 strcmp (which(‘ccc’),‘E:\ toolbox\ matlab\ myDIYfile\ a\ b\ ccc.m’),则结果为false,因为which(‘ccc’)会将大写DIY变成diy,那么用字符串来对比路径就不明智了。

tic 启动秒表计时器

IGD:  反世代距离评价指标(Inverted Generational Distance, IGD) 是一个综合性能评价指标。它主要通过计算每个在真实 Pareto前沿面上的点(个体)到算法获取的个体集合之间的最小距离和,来评价算法的收敛性能和分布性能。值越小,算法的综合性能包括收敛性和分布性能越好。 

启发式算法 (Heuristic Algorithms) 是基于直观或经验构造的算法,在可接受的花费 (指计算时间、占用空间等) 下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度不一定事先可以预计。

元启发式算法 (Meta-Heuristic Algorithms) 是启发式算法的改进,通常使用随机搜索技巧,可以应用在非常广泛的问题上,但不能保证效率。

超启发式算法(Hyper-Heuristic Algorithms) 是新近提出的一类解决复杂优化问题的概念模型。该模型主要通过一种高层次启发式策略(High-level Heuristic,简称 HLH)管理和操纵一系列低层次启发式(Low-level Heuristics,简称 LLH)方法以实现在解空间中的寻优。
作为一种有效的搜索方法,超启发式算法可以自动选择、组合或生成多个简单的 LLH 方法以解决复杂的优化问题。
超启发式算法与传统的启发式方法最主要的区别在于它搜索的是启发式算法,而不是问题的解,并通过搜索过程得到的相关信息控制搜索过程。在组合优化领域,超启发式算法被描述为“搜索启发式算法的启发式算法”。给定一个问题实例和一些底层启发式算法集,高层算法就可以在算法搜索过程中,在相应的决策点做出恰当的“指挥”,从而选择并应用最合适的低层启发算法,而选择出来的算法将被直接用于问题的求解。

cell数组的创建

1.cell数组的创建

可以直接通过{}类似于矩阵的直接赋值:a={'winter',123,'coming','哈哈'};

也可以通过cell函数预分配内存,再赋值:a=cell(1,4);a={'winter',123,'coming','哈哈'};

Hypervolume(HV)超体积指标

    根据Zitzler等人的说法(2003),Hypervolume指标是唯一已知的一元指标,它可以由其超体积的单个值来评估一个解集的质量, 且是唯一已知的符合帕累托支配概念的指标。 超体积是评估近似解集的收敛性和多样性的综合指标(Zitzler和Thiele 1999)。 因此,给定在n个目标中包含m个点的集合S,解集S的超体积是由S中的至少一个点支配的目标空间的一部分的大小。相对于参考点计算S的超体积,该参考点在每个目标中的比S中的每个点更差(或等于)。 如图8所示,超体积值越大,就认为该解集越好。 超体积的一个主要优点(Zitzler和Thiele 1999; Zitzler等人,2003)是它能够以单个数字得到解与最优集合的接近程度,并在某种程度上得到目标空间上解的分布。缺点是计算消耗过大,且参考点选取对准确定有一定的影响。

A practical tutorial on solving optimization problems via PlatEMO

然论文主要在基准测试上研究元启发式算法的性能,但用户很难确定解决特定应用的最有效方法[9]。更严重的是,每个元启发式都有自己的适用范围,误用不仅会导致性能不理想,还会产生错误。如果使用基于分解的多目标元启发式算法[10]来解决单目标优化问题,程序将陷入无限循环。如果使用基于主成分分析的元启发式[11]来解决一个有10000个变量的问题,程序可能会内存不足。如果使用大规模的元启发式[12]来解决一个昂贵的问题,程序可能会在终止前运行几个月。

运行过程图解(上图)在4.7版本的中文手稿的26页

Sphere Function (sfu.ca)SOF—F1Sphere Function (sfu.ca)  

稀疏优化:最优解中大部分的决策变量均为零

稀疏优化(Sparse Optimization)是一种优化问题,其中最优解中的大部分决策变量(Decision Variables)都取值为零。这种优化问题在许多实际应用中都非常重要,例如图像处理、压缩感知、信号处理等。

在稀疏优化问题中,通常假设数据或模型具有某种形式的稀疏性,这意味着大多数的决策变量对结果的影响很小,或者在某些情况下,某些决策变量根本不起作用。通过利用这种稀疏性,可以大大简化问题的复杂性,并可能获得更好的性能。

稀疏优化问题的一个典型例子是压缩感知(Compressed Sensing),它假设信号在某个变换域上是稀疏的,并且可以使用远低于传统采样率的数据进行准确重构。在压缩感知的框架下,稀疏优化问题可以表述为:

                                         

在稀疏优化问题中,算法设计的关键是有效地识别和利用数据的稀疏性。一些常见的稀疏优化算法包括:

  • 正交匹配追踪(OMP):通过迭代选择一组最相关的原子来逼近稀疏解。
  • 分段线性规划(SL0):通过惩罚非零系数的平方和来逼近稀疏解。
  • 软阈值方法:通过将非零系数的绝对值与一个阈值比较来逼近稀疏解。

稀疏优化问题的一个重要特点是,即使是最优解中的大部分决策变量为零,这些非零变量的值仍然可以提供足够的精度来重构原始数据或模型。这使得稀疏优化成为许多领域中的一种高效的数据处理和模型建立方法。

雅可比矩阵

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QianMo-WXJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值