PyTorch框架学习十六——正则化与Dropout

这次笔记主要关注防止模型过拟合的两种方法:正则化与Dropout。

一、泛化误差

一般模型的泛化误差可以被分解为三部分:偏差、方差与噪声。按照周志华老师西瓜书中的定义,这三者分别如下所示:

  1. 偏差:度量学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力。
  2. 方差:度量了同样大小的训练集的变动导致的学习性能的变化,刻画了数据扰动所造成的影响。
  3. 噪声:表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界。

这样的表达可能不太好理解,下面给出了一张图,帮助一下理解:
在这里插入图片描述

二、L2正则化与权值衰减

正则化是一种减小方差的策略,具体可以学习吴恩达老师的机器学习的视频。

损失函数衡量模型的输出与真实标签的差异,正则化使用的地方在目标函数,即在原来的代价函数的基础上再加上正则化项。

  1. L1正则化项:在这里插入图片描述
  2. L2正则化项:在这里插入图片描述
    因为在实际使用中L2正则化使用的较多,所以这里重点介绍L2正则化。

L2正则化的目标函数如下所示:
在这里插入图片描述
其中正则化项前的系数lambda/2,lambda调节正则化的程度,/2是为了反向传播求导的时候和平方的2可以约掉。

在反向传播进行权值更新时,无正则化项和有正则化项的更新公式如下所示:
在这里插入图片描述
一般lambda是在0到1之间的数,所以从上图得知,有正则化时更新后的权值会比无正则化时更小一点,所以一般也将L2正则化称为权值衰减(weight decay)。

下面构建了两个相同的网络,一个没有用正则化项,一个使用了正则化项,可以观察它们各自的拟合效果:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import sys, os
from tools.common_tools import set_seed
from torch.utils.tensorboard import SummaryWriter

set_seed(1)  # 设置随机种子
n_hidden = 200  # 自定义一个全连接网络,每层200个神经元
max_iter = 2000  # 最大迭代次数2000次
disp_interval = 200  # 绘图的epoch间隔
lr_init = 0.01  # 初始化学习率

# ============================ step 1/5 数据 ============================
# 构造一批虚拟的数据
def gen_data(num_data=10, x_range=(-1, 1)):

    w = 1.5
    train_x = torch.linspace(*x_range, num_data).unsqueeze_(1)
    train_y = w*train_x + torch.normal(0, 0.5, size=train_x.size())
    test_x = torch.linspace(*x_range, num_data).unsqueeze_(1)
    test_y = w*test_x + torch.normal(0, 0.3, size=test_x.size())

    return train_x, train_y, test_x, test_y

train_x, train_y, test_x, test_y = gen_data(x_range=(-1, 1))

# ============================ step 2/5 模型 ============================
class MLP(nn.Module):
    def __init__(self, neural_num):
        super(MLP, self).__init__()
        self.linears = nn.Sequential(
            nn.Linear(1, neural_num),
            nn.ReLU(inplace=True),
            nn.Linear(neural_num, neural_num),
            nn.ReLU(inplace=True),
            nn.Linear(neural_num, neural_num),
            nn.ReLU(inplace=True),
            nn.Linear(neural_num, 1),
        )

    def forward(self, x):
        return self.linears(x)

# 实例化两个上面构建的全连接网络,用于比较
net_normal = MLP(neural_num=n_hidden)
net_weight_decay = MLP(neural_num=n_hidden)

# ============================ step 3/5 优化器 ============================
# net_normal 无正则化,net_weight_decay 有正则化,系数为1e-2
optim_normal = torch.optim.SGD(net_normal.parameters(), lr=lr_init, momentum=0.9)
optim_wdecay = torch.optim.SGD(net_weight_decay.parameters(), lr=lr_init, momentum=0.9, weight_decay=1e-2)

# ============================ step 4/5 损失函数 ============================
loss_func = torch.nn.MSELoss()

# ============================ step 5/5 迭代训练 ============================
writer = SummaryWriter(comment='_test_tensorboard', filename_suffix="12345678")

for epoch in range(max_iter):
    # forward
    pred_normal, pred_wdecay = net_normal(train_x), net_weight_decay(train_x)
    loss_normal, loss_wdecay = loss_func(pred_normal, train_y), loss_func(pred_wdecay, train_y)

    optim_normal.zero_grad()
    optim_wdecay.zero_grad()

    loss_normal.backward()
    loss_wdecay.backward()

    optim_normal.step()
    optim_wdecay.step()

    if (epoch+1) % disp_interval == 0:

        # 可视化
        for name, layer in net_normal.named_parameters():
            writer.add_histogram(name + '_grad_normal', layer.grad, epoch)
            writer.add_histogram(name + '_data_normal', layer, epoch)

        for name, layer in net_weight_decay.named_parameters():
            writer.add_histogram(name + '_grad_weight_decay', layer.grad, epoch)
            writer.add_histogram(name + '_data_weight_decay', layer, epoch)

        test_pred_normal, test_pred_wdecay = net_normal(test_x), net_weight_decay(test_x)

        # 绘图
        plt.scatter(train_x.data.numpy(), train_y.data.numpy(), c='blue', s=50, alpha=0.3, label='train')
        plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='red', s=50, alpha=0.3, label='test')
        plt.plot(test_x.data.numpy(), test_pred_normal.data.numpy(), 'r-', lw=3, label='no weight decay')
        plt.plot(test_x.data.numpy(), test_pred_wdecay.data.numpy(), 'b--', lw=3, label='weight decay')
        plt.text(-0.25, -1.5, 'no weight decay loss={:.6f}'.format(loss_normal.item()), fontdict={'size': 15, 'color': 'red'})
        plt.text(-0.25, -2, 'weight decay loss={:.6f}'.format(loss_wdecay.item()), fontdict={'size': 15, 'color': 'red'})

        plt.ylim((-2.5, 2.5))
        plt.legend(loc='upper left')
        plt.title("Epoch: {}".format(epoch+1))
        plt.show()
        plt.close()

最终的拟合效果:
在这里插入图片描述
红色的线显然已经过拟合了,而蓝色的线加了正则化项,比红色的线的效果好一点,这就是L2正则化项缓解过拟合的一个举例。

因为在代码中使用了TensorBoard可视化每一网络层的权重,可以看一下有无正则化两种情况下权值分布的差异:
在这里插入图片描述
可以看出不加正则化时,权值是比较分散的,而且存在较大的值,加入正则化之后,权值的分布都集中在较小值的范围,不存在较大的权值,这也是减轻过拟合的体现。

三、正则化之Dropout

Dropout的概念发扬光大于AlexNet之中,简单来说就是对网络中的每个神经元进行随机失活。

  • 随机:有一个失活概率Dropout probability。
  • 失活:该神经元对应的权值为0,即该神经元不与其他神经元连接。

如下图所示就是一次随机失活的情况:
在这里插入图片描述
训练过程的每个epoch得到的失活后的网络都不一样,这样使得模型具有多样性,不会特别依赖某些固定的神经元,不会使得某些神经元的权重过大,缓解了过拟合的问题。

注意:Dropout是在训练过程进行随机失活,在测试的时候是恢复为原来的网络结构的,所以测试的时候,要将所有的权重乘以1-Dropout probability,以保持输入与权值相乘的结果与训练时一样大。

下面我们看一下在PyTorch中Dropout的实现:

torch.nn.Dropout(p: float = 0.5, inplace: bool = False)

参数如下:
在这里插入图片描述
主要就是一个失活概率p,默认为0.5。

然后需要注意的是,PyTorch在实现Dropout的时候,训练时权重均乘以了1/(1-p),即除以1-p,这样的话测试的时候就不用手动将所有的权重乘以1-Dropout probability了,方便了测试的过程。

用上面L2正则化的代码示例稍加修改作为Dropout的举例:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import sys, os
from tools.common_tools import set_seed
from torch.utils.tensorboard import SummaryWriter

set_seed(1)  # 设置随机种子
n_hidden = 200
max_iter = 2000
disp_interval = 400
lr_init = 0.01


# ============================ step 1/5 数据 ============================
def gen_data(num_data=10, x_range=(-1, 1)):

    w = 1.5
    train_x = torch.linspace(*x_range, num_data).unsqueeze_(1)
    train_y = w*train_x + torch.normal(0, 0.5, size=train_x.size())
    test_x = torch.linspace(*x_range, num_data).unsqueeze_(1)
    test_y = w*test_x + torch.normal(0, 0.3, size=test_x.size())

    return train_x, train_y, test_x, test_y

train_x, train_y, test_x, test_y = gen_data(x_range=(-1, 1))

# ============================ step 2/5 模型 ============================
class MLP(nn.Module):
    def __init__(self, neural_num, d_prob=0.5):
        super(MLP, self).__init__()
        self.linears = nn.Sequential(

            nn.Linear(1, neural_num),
            nn.ReLU(inplace=True),

            nn.Dropout(d_prob),
            nn.Linear(neural_num, neural_num),
            nn.ReLU(inplace=True),

            nn.Dropout(d_prob),
            nn.Linear(neural_num, neural_num),
            nn.ReLU(inplace=True),

            nn.Dropout(d_prob),
            nn.Linear(neural_num, 1),
        )

    def forward(self, x):
        return self.linears(x)

net_prob_0 = MLP(neural_num=n_hidden, d_prob=0.)
net_prob_05 = MLP(neural_num=n_hidden, d_prob=0.5)

# ============================ step 3/5 优化器 ============================
optim_normal = torch.optim.SGD(net_prob_0.parameters(), lr=lr_init, momentum=0.9)
optim_reglar = torch.optim.SGD(net_prob_05.parameters(), lr=lr_init, momentum=0.9)

# ============================ step 4/5 损失函数 ============================
loss_func = torch.nn.MSELoss()

# ============================ step 5/5 迭代训练 ============================

writer = SummaryWriter(comment='_test_tensorboard', filename_suffix="12345678")
for epoch in range(max_iter):

    pred_normal, pred_wdecay = net_prob_0(train_x), net_prob_05(train_x)
    loss_normal, loss_wdecay = loss_func(pred_normal, train_y), loss_func(pred_wdecay, train_y)

    optim_normal.zero_grad()
    optim_reglar.zero_grad()

    loss_normal.backward()
    loss_wdecay.backward()

    optim_normal.step()
    optim_reglar.step()

    if (epoch+1) % disp_interval == 0:

        net_prob_0.eval()
        net_prob_05.eval()

        # 可视化
        for name, layer in net_prob_0.named_parameters():
            writer.add_histogram(name + '_grad_normal', layer.grad, epoch)
            writer.add_histogram(name + '_data_normal', layer, epoch)

        for name, layer in net_prob_05.named_parameters():
            writer.add_histogram(name + '_grad_regularization', layer.grad, epoch)
            writer.add_histogram(name + '_data_regularization', layer, epoch)

        test_pred_prob_0, test_pred_prob_05 = net_prob_0(test_x), net_prob_05(test_x)

        # 绘图
        plt.clf()
        plt.scatter(train_x.data.numpy(), train_y.data.numpy(), c='blue', s=50, alpha=0.3, label='train')
        plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='red', s=50, alpha=0.3, label='test')
        plt.plot(test_x.data.numpy(), test_pred_prob_0.data.numpy(), 'r-', lw=3, label='d_prob_0')
        plt.plot(test_x.data.numpy(), test_pred_prob_05.data.numpy(), 'b--', lw=3, label='d_prob_05')
        plt.text(-0.25, -1.5, 'd_prob_0 loss={:.8f}'.format(loss_normal.item()), fontdict={'size': 15, 'color': 'red'})
        plt.text(-0.25, -2, 'd_prob_05 loss={:.6f}'.format(loss_wdecay.item()), fontdict={'size': 15, 'color': 'red'})

        plt.ylim((-2.5, 2.5))
        plt.legend(loc='upper left')
        plt.title("Epoch: {}".format(epoch+1))
        plt.show()
        plt.close()

        net_prob_0.train()
        net_prob_05.train()

做的修改就是网络模型里加入了Dropout层,删去了L2正则化项,然后实例化了两个模型,一个失活概率为0,即等效为不加Dropout层,一个失活概率为0.5,即加入Dropout层,将这两个模型进行数据拟合,观察结果如下:
在这里插入图片描述
也可以看出,Dropout层的加入也一定程度上缓解了过拟合。

同样,我们也来看一下这时的权值分布,因为第一层是输入层,没有加Dropout层,所以我们看第三层的权值分布(第二层为ReLU层):
在这里插入图片描述
也有类似的作用——收缩权重。

补充:

在使用Dropout层,以及后面要讲的BN层这些东西时,还有一个需要注意的小细节,因为这些层在训练模式和测试模式是有差别的,所以在不同时刻需要切换模式,用到的就是上面代码中的

net_prob_0.eval()
net_prob_05.eval()

以及:

net_prob_0.train()
net_prob_05.train()
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,可以使用正则化dropout来提高模型的泛化能力和防止过拟合。 1. 正则化(Regularization): 正则化是通过在损失函数中引入模型参数的惩罚项来减小模型的复杂度。常见的正则化方法有L1正则化和L2正则化。 - L1正则化(L1 Regularization):通过在损失函数中添加模型权重的绝对值之和作为惩罚项。这可以促使模型权重变得稀疏,即某些权重趋近于零。 ```python loss = criterion(output, target) l1_lambda = 0.01 # L1正则化系数 l1_regularization = torch.tensor(0, dtype=torch.float32) for param in model.parameters(): l1_regularization += torch.norm(param, 1) loss += l1_lambda * l1_regularization ``` - L2正则化(L2 Regularization):通过在损失函数中添加模型权重的平方和作为惩罚项。这可以使权重趋向于较小的值,但不会使其为零。 ```python loss = criterion(output, target) l2_lambda = 0.01 # L2正则化系数 l2_regularization = torch.tensor(0, dtype=torch.float32) for param in model.parameters(): l2_regularization += torch.norm(param, 2) loss += l2_lambda * l2_regularization ``` 2. Dropout: Dropout是一种在训练过程中随机丢弃一部分神经元以减少模型过拟合的技术。它在每个训练批次中以一定的概率将神经元的输出置为零,使得网络不依赖于特定的神经元,从而提高了模型的泛化能力。 在PyTorch中,可以使用`torch.nn.Dropout`来添加Dropout层到模型中: ```python import torch.nn as nn # 在模型的定义中添加Dropout层 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.dropout = nn.Dropout(p=0.5) # dropout概率为0.5 # 其他网络层的定义... def forward(self, x): x = self.dropout(x) # 其他网络层的计算... return x ``` 在训练过程中,模型会自动应用Dropout,并在评估或推理时关闭Dropout以获得更稳定的预测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值