PTA 7-2 求两个一元多项式的和 (20分)

7-2 求两个一元多项式的和 (20分)
求两个一元多项式的和。

输入格式:
输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。

输出格式:
输出分1行,分别以指数递降方式输出和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0。

输入样例1:

4 3 4 -5 2  6 1  -2 0
3 5 20  -7 4  3 1

输出样例1:

5 20 -4 4 -5 2 9 1 -2 0

AC代码

#include <iostream>
using namespace std;

struct Node                                  //定义多项式链表的结点
{
	int coef, exp;                          // coef表示系数,exp表示指数
	Node *next;
};

class Polynomial
{
public:
  	Polynomial( );                          //构造函数
  	~Polynomial( );                         //析构函数,同单链表析构函数
   	Polynomial(const Polynomial &B);          //拷贝构造函数
   	Polynomial operator + (Polynomial &B);   //重载运算法,多项式相加
  	void Print( );                           //打印一元多项式
private:
  	Node *first;
};

Polynomial::~Polynomial( )
{
	Node *q = nullptr;
  	while (first != nullptr)        //释放单链表的每一个结点的存储空间
  	{
    	q = first;                  //暂存被释放结点
    	first = first->next;         // first指向被释放结点的下一个结点
    	delete q;
  	}
}

Polynomial :: Polynomial(const Polynomial &B){
	first = B.first;
}

Polynomial :: Polynomial( )
{
	Node *r = nullptr, *s = nullptr;
	int coef, exp;
	first = new Node;                          //申请头结点
	r = first; r->next = nullptr;             //尾插法建立单链表
	//cout<<"sr xs zs:";
	int nnn;
	cin>>nnn;
	while(nnn--){
        cin >> coef >> exp;
        s = new Node; s->coef = coef; s->exp = exp;
		r->next = s; r = s;
	}
	//cout << "请输入系数和指数:";
	//输入第一项的系数和指数
	/*while (coef != 0 && exp != 0)                          //循环结束的条件是输入系数为0
	{
		                     //将结点s插入单链表的尾部
		//cout<<"sr xs zs:";
		//cout << "请输入系数和指数:";
		cin >> coef >> exp;
	}*/
	r->next = nullptr;
}

Polynomial Polynomial :: operator + (Polynomial &B)
{
	Node *pre = first, *p = pre->next;               //工作指针pre和p初始化
	Node *qre = B.first, *q = qre->next;             //工作指针qre和q初始化
	Node *qtemp = nullptr;
	while (p != nullptr && q != nullptr)
	{
		if (p->exp > q->exp) {                     //第1种情况
			pre = p; p = p->next;
		}
		else if (p->exp < q->exp) {                 //第2种情况
	  		qtemp = q->next;
	  		pre->next = q;                     //将结点q插入到结点p之前
	  		q->next = p;
	  		q = qtemp;
	  		pre = q;
	  		qre->next = q;
		}
		else {                             //第3种情况
	  		p->coef = p->coef + q->coef;
		  	if (p->coef == 0) {                //系数相加为0,则删除结点p
		    	pre->next = p->next;
	    		delete p;
	    		p = pre->next;
			}
			else {                          //系数不为0
	  			pre = p; p = p->next;
			}
			qre->next = q->next;             //第3种情况都要删除结点q
			delete q;
			q = qre->next;
		}
	}
	if (p == nullptr) pre->next = q;          //将结点q链接在第一个单链表的后面
	B.first->next = nullptr;
	return *this;
}

void Polynomial :: Print( )
{
	Node *p = first->next;
	if(p==nullptr){
        cout<<0<<" "<<0<<endl;
        return;
	}
	if (p != nullptr)                             /*输出第一项*/
		cout << p->coef << " " << p->exp;
	p = p->next;
	while (p != nullptr)
	{
		if (p->coef > 0)                           /*输出系数的正号或负号*/
			cout << " " << p->coef << " " << p->exp;
		else
		  cout << " "<< p->coef << " " << p->exp;
		p = p->next;
	}
	cout << endl;
}

int main( )
{
	Polynomial A{ };
	//A.Print( );
	Polynomial B{ };                       //定义多项式A和B
	//B.Print( );
	Polynomial C = A + B;
	//printf("结果是:");
	C.Print( );                            //输出相加结果
	return 0;
}
  • 偷懒直接改的课本上的代码0v0

在这里插入图片描述

  1. 更改
    1,输入的终止条件不同
    2,数据升序降序不同,operator + 函数中<>方向改变
    3,Print函数中,原函数缺少对空链表的判断,链表为空时输出0 0(测试点2)
  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 一元多项式导是指对一个只有一个变量的多项式函数进行导操作。具体来说,就是对多项式中的每一项导,并将结果相加得到最终的导数。 例如,对于多项式 f(x) = 3x^2 + 2x + 1,其导数为 f'(x) = 6x + 2。 在导的过程中,需要注意多项式中每一项的系数和指数都要乘以其对应的导数,而常数项的导数为。此外,还需要注意链式法则和乘法法则等导规则的应用。 总之,一元多项式导是微积中的基本操作之一,对于理解和应用微积具有重要意义。 ### 回答2: 一元多项式导是高中数学中的重要部,也是微积的重要内容之一。在学习一元多项式导时,我们需要掌握以下几个方面的知识。 首先,我们需要知道什么是一元多项式一元多项式是指只含有一个变量的多项式,例如:$f(x) = x^5+x^3-2x+1$。 其次,我们需要掌握导数的概念。导数是一个函数在某一点的斜率,它描述了函数在该点附近的变化趋势。导数的定义公式为:$$f'(x) = \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}$$其中,$h$表示$x$的增量。 然后,我们需要了解导的基本公式。对于$x^n$,它的导数为$nx^{n-1}$;对于$f(x)+g(x)$,它的导数为$f'(x)+g'(x)$;对于$f(x)g(x)$,它的导数为$f'(x)g(x)+f(x)g'(x)$。 最后,我们需要掌握导的规则。对于多项式导,我们可以将每一项导,然后将它们相加得到整个多项式的导数。例如:$$\begin{aligned}f(x) &= x^5+x^3-2x+1 \\ f'(x) &= 5x^4+3x^2-2\end{aligned}$$ 需要注意的是,多项式导的结果仍然是一个多项式,只是次数会降低一次。 总之,学习一元多项式导需要牢固掌握多项式、导数、导公式和导规则等基本知识,通过大量的例题练习和思考,逐渐提高解问题的能力。 ### 回答3: 在学习高等数学中,我们经常会遇到多次函数与多项式函数,而其中一个重要的操作就是导。在本题中,我们将介绍一元多项式导,其中多项式可以看做一个函数,其导函数便是对函数导所得。接下来,我们将几个方面介绍一元多项式导。 一、多项式函数的定义及性质 在介绍多项式函数的导之前,先要理解多项式函数的定义及其性质。多项式函数是指由常数和变量经过有限次加、减、乘、幂运算所得到的函数,例如:f(x) = a0 + a1x + a2x^2 + … + anx^n 中,a0,a1,a2,…,an 是常数,x 是自变量,n 是正整数。其中,每一项称为一项式,每项式中的常数和变量作为一个整体称为项系数。 多项式函数有几个重要的性质:首先,多项式函数是一个连续的函数,其在实数范围内均有定义。其次,多项式函数的导数仍是一个多项式函数。最后,多项式函数在某个点处的导数就是它在该点的斜率。 二、一元多项式导的原理 一元多项式导的原理是利用导数的公式,对多项式函数中的每一项式导,然后将每一项式的导数相加,得出多项式的导数函数。具体而言,如果多项式的表达式为: P(x) = a0 + a1x + a2x^2 + … + anx^n 则它的导数函数为: P'(x) = a1 + 2a2x + 3a3x^2 + … + nanx^(n-1) 其中,a1,a2,a3,…,an 是各项式的系数,同时也是导数函数中各项式的系数。 三、一元多项式导的基本规律 在多项式的导函数时,需要掌握数学家牛顿的除积法则和幂法则等相关的基本规律。它们的具体表述如下: 1、常数函数导后为0,即:(C)'=0 2、幂函数导后,指数减1,再乘上原来的系数,即:(x^n)' = n*x^(n-1) 3、和函数的导数等于各式的导数的和,即:(u + v)' = u' + v' 4、积函数的导数等于两式导后的积加上前者的导数乘以后者,即:(uv)' = u'v + uv' 5、商函数的导数等于后式的平方乘以前式的导数减去前式的平方乘以后式的导数,并除以后式的平方,即:(u/v)' = (u'v - uv')/v^2 四、一元多项式导的举例 最后,我们来看一些实际的例子。 1、出多项式 f(x) = 3x^4 - 2x^2 + 5 在 x = 1 时的导数。 由一元多项式导的原理可知,首先需要对每一项式导,其次将各项式的导数相加得到整个多项式的导数函数。 因此: f'(x) = 12x^3 - 4x 将 x = 1 代入上述式子中,则有: f'(1) = 12*1^3 - 4*1 = 8 因此,多项式 f(x) 在 x = 1 时的导数为 8。 2、出多项式 g(x) = 4x^3 - 2x^2 + x - 5 的导数函数。 同样地,我们可以利用多项式导的原理,对 g(x) 的每一项式导,然后将各项式的导数相加。 因此: g'(x) = 12x^2 - 4x + 1 具体来说, 4x^3 的导数系数为 12x^2, -2x^2 的导数系数为 -4x, x 的导数系数为 1, -5 的导数系数为 0。 综上所述,一元多项式导是一种重要的数学运算,它在高等数学和其他学科中都扮演着重要的角色。因此,我们应该对其重要性有深刻的认识,并善于应用其基本原理及规律,以解决实际问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值