高等数学1-3章

第1章 极限

0.常用基本结论

  • 多项式
    ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ∑ k = 1 n k 3 = n 2 ( n + 1 ) 2 4 a n − b n = ( a − b ) ∑ k = 0 n a n − k b k 1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) 1 n + n + k = 1 k ( n + k − n ) n ( n + 1 ) ! = 1 n ! − 1 ( n + 1 ) ! m a x ( x , y ) = x + y 2 + ∣ x − y ∣ 2 m i n ( x , y ) = x + y 2 − ∣ x − y ∣ 2 f ( x ) = f ( x ) + f ( − x ) 2 + f ( x ) − f ( − x ) 2 \begin{aligned} &\sum_{k=1}^nk^2 = \frac{n(n+1)(2n+1)}6 \quad \sum_{k=1}^n k^3= \frac{n^2(n+1)^2}4 \\ & a^n - b^n = (a-b)\sum_{k=0}^na^{n-k}b^{k}\\ & \frac{1}{n(n+k)} = \frac1k(\frac1n-\frac1{n+k}) \quad \frac{1}{\sqrt{n}+\sqrt{n+k}} = \frac1k(\sqrt{n+k}-\sqrt{n}) \\ & \frac{n}{(n+1)!} = \frac1{n!}-\frac1{(n+1)!} \\ & max(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2} \quad min(x,y) = \frac{x+y}{2} - \frac{|x-y|}{2} \\ & f(x) = \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2} \\ \end{aligned} k=1nk2=6n(n+1)(2n+1)k=1nk3=4n2(n+1)2anbn=(ab)k=0nankbkn(n+k)1=k1(n1n+k1)n +n+k 1=k1(n+k n )(n+1)!n=n!1(n+1)!1max(x,y)=2x+y+2xymin(x,y)=2x+y2xyf(x)=2f(x)+f(x)+2f(x)f(x)
  • 三角函数
    a r c t a n A + a r c t a n B = a r c t a n A + B 1 − A B a r c t a n A − a r c t a n B = a r c t a n A − B 1 + A B a r c t a n x + a r c c o t x = a r c t a n x + a r c t a n 1 x = π 2   1 − c o s x = 2 s i n 2 x 2 1 + c o s x = 2 c o s 2 x 2 1 ± s i n x = ( c o s x 2 ± s i n x 2 ) 2 s e c 2 x = 1 + t a n 2 x c s c 2 x = 1 + c o t 2 x \begin{aligned} &arctanA + arctanB = arctan\frac{A+B}{1-AB} \\ &arctanA - arctanB = arctan\frac{A-B}{1+AB} \\ &arctanx + arccotx =arctanx + arctan\frac1x = \frac{\pi}{2} \\\,\\ &1-cosx=2sin^2\frac x2 \quad 1+cosx=2cos^2\frac x2 \quad 1 \pm sinx = (cos\frac{x}2\pm sin\frac{x}2)^2 \\ &sec^2x = 1 + tan^2x \quad csc^2x = 1 + cot^2x \end{aligned} arctanA+arctanB=arctan1ABA+BarctanAarctanB=arctan1+ABABarctanx+arccotx=arctanx+arctanx1=2π1cosx=2sin22x1+cosx=2cos22x1±sinx=(cos2x±sin2x)2sec2x=1+tan2xcsc2x=1+cot2x
    在这里插入图片描述
  • 不等式
    ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ x 1 + x < l n ( 1 + x ) < x < e x − 1 s i n x < x < t a n x a b ≤ ( a + b 2 ) 2 a b ≤ a 2 + b 2 2 ( a + b ) 2 ≤ 2 ( a 2 + b 2 )   H n ≤ G n ≤ A n ≤ Q n H n = n 1 x 1 + 1 x 2 + . . + 1 x n G n = x 1 x 2 . . x n n A n = x 1 + x 2 + . . + x n n Q n = x 1 2 + x 2 2 + . . + x n 2 n \begin{aligned} & \big||a| - |b|\big| \le |a \pm b| \le |a| + |b| \\ & \frac{x}{1+x} < ln(1+x) < x < e^{x}-1 \quad sinx < x < tanx \\ & ab \leq (\frac{a+b}{2})^2 \quad ab \leq \frac{a^2+b^2}{2} \quad (a+b)^2 \le 2(a^2+b^2) \\\,\\ & H_n \le G_n \le A_n \le Q_n \\ & H_n = \frac{n}{\frac1{x_1}+\frac1{x_2}+..+\frac1{x_n}} \quad G_n = \sqrt[n]{x_1x_2..x_n} \\ & A_n = \frac{x_1+x_2+..+x_n}{n} \quad Q_n = \sqrt{\frac{x_1^2+x_2^2+..+x_n^2}{n}} \end{aligned} aba±ba+b1+xx<ln(1+x)<x<ex1sinx<x<tanxab(2a+b)2ab2a2+b2(a+b)22(a2+b2)HnGnAnQnHn=x11+x21+..+xn1nGn=nx1x2..xn An=nx1+x2+..+xnQn=nx12+x22+..+xn2

1.极限的基本概念

  • 极限存在的充要条件
    lim ⁡ n → ∞ a n = A ⇔ lim ⁡ n → ∞ a 2 n − 1 = lim ⁡ n → ∞ a 2 n = A lim ⁡ x → x 0 f ( x ) = A ⇔ lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = A lim ⁡ x → ∞ f ( x ) = A ⇔ lim ⁡ x → − ∞ f ( x ) = lim ⁡ x → + ∞ f ( x ) = A \begin{aligned} &\lim_{n \to \infty} a_n=A \Leftrightarrow \lim_{n \to \infty} a_{2n-1}=\lim_{n \to \infty}a_{2n}=A\\ &\lim_{x \to x_0} f(x)=A \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A \\ &\lim_{x \to \infty} f(x)=A \Leftrightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A \end{aligned} nliman=Anlima2n1=nlima2n=Axx0limf(x)=Axx0limf(x)=xx0+limf(x)=Axlimf(x)=Axlimf(x)=x+limf(x)=A

  • 极限不存在的情况
    ( 1 ) lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) : lim ⁡ x → 0 s g n ( x ) ( 2 ) lim ⁡ x → − ∞ f ( x ) ≠ lim ⁡ x → + ∞ f ( x ) : lim ⁡ x → ∞ a r c t a n x , lim ⁡ x → ∞ e x , lim ⁡ x → ∞ x 2 + 1 x ( 3 ) lim ⁡ f ( x ) = ∞ : lim ⁡ x → + ∞ l n x = + ∞ ( 4 ) lim ⁡ x → ∞ s i n x \small \begin{aligned} & (1)\lim_{x \to x_0^-} f(x) \ne \lim_{x \to x_0^+} f(x):\lim_{x \to 0} sgn(x) \\ & (2)\lim_{x \to -\infty} f(x) \ne \lim_{x \to +\infty} f(x):\lim_{x \to \infty}arctanx, \lim_{x \to \infty}e^x, \lim_{x \to \infty}\frac{\sqrt{x^2+1}}{x} \\ & (3)\lim f(x) = \infty:\lim_{x \to +\infty}lnx = +\infty \\ & (4)\lim_{x \to \infty}sinx \\ \end{aligned} (1)xx0limf(x)=xx0+limf(x)x0limsgn(x)(2)xlimf(x)=x+limf(x)xlimarctanx,xlimex,xlimxx2+1 (3)limf(x)=x+limlnx=+(4)xlimsinx

  • 局部保号性
    在这里插入图片描述

  • 局部保序性
    在这里插入图片描述


2.函数有界的充分条件

( 1 ) lim ⁡ x → x 0 f ( x ) 存 在 , ∃   δ > 0 , 当 ∣ x − x 0 ∣ < δ , f ( x ) 有 界 ( 2 ) lim ⁡ x → ∞ f ( x ) 存 在 , ∃   X > 0 , 当 ∣ x ∣ > X , f ( x ) 有 界 ( 3 ) f ( x ) 在 [ a , b ] 上 连 续 , 则 f ( x ) 有 界 ( 4 ) 有 界 函 数 之 和 、 之 积 均 为 有 界 函 数 \begin{aligned} & (1)\lim_{x \to x_0} f(x)存在,\exists\, \delta > 0, 当 |x-x_0| < \delta, f(x)有界 \\ & (2)\lim_{x \to \infty} f(x)存在,\exists\, X > 0, 当 |x| > X, f(x)有界 \\ & (3)f(x)在[a,b]上连续,则f(x)有界 \\ & (4)有界函数之和、之积均为有界函数 \end{aligned} (1)xx0limf(x)δ>0,xx0<δ,f(x)(2)xlimf(x)X>0,x>X,f(x)(3)f(x)[a,b]f(x)(4)


3.函数极限

①四则运算法则
②洛必达法则
  • 一定要保证 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) x 0 x_0 x0去心邻域内可导
  • 如果只说 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) x 0 x_0 x0 处可导,或在 x 0 x_0 x0 的去心邻域内连续,推不出在 x 0 x_0 x0 的去心邻域内可导
  • f ( x ) f(x) f(x) 在 x = 0 的某邻域内连续, f ( 0 ) ≠ 0 f(0) \neq 0 f(0)=0,求
    lim ⁡ x → 0 ∫ 0 x ( x − t ) f ( t ) d t x ∫ 0 x f ( x − t ) d t \lim_ {x \to 0} \frac{\int_0^x (x-t)f(t) \rm dt}{x\int_0^x f(x-t) \rm dt} x0limx0xf(xt)dt0x(xt)f(t)dt
③等价无穷小
  • 常用等价无穷小
    1 − c o s k x ∼ k x 2 2 1 + x k − 1 ∼ x k     a x − 1 ∼ x l n a a r c s i n x ∼ x a r c t a n x ∼ x t a n x − s i n x ∼ x 3 2 x − s i n x ∼ x 3 6 a r c s i n x − x ∼ x 3 6 x − a r c t a n x ∼ x 3 3     t a n x − x ∼ x 3 3 \begin{aligned} &1- cos^kx \sim k\frac{x^2}2 \quad \sqrt[k]{1 + x} - 1 \sim \frac xk \space\space\space a^x - 1 \sim xlna \\ &arcsinx \sim x \quad arctanx \sim x \quad tanx - sinx \sim \frac{x^3}{2} \\ &x -sinx \sim \frac{x^3}{6} \quad arcsinx - x \sim \frac{x^3}{6} \\ &x - arctanx \sim \frac{x^3}{3} \space\space\space tanx - x\sim \frac{x^3}{3} \\ \end{aligned} 1coskxk2x2k1+x 1kx   ax1xlnaarcsinxxarctanxxtanxsinx2x3xsinx6x3arcsinxx6x3xarctanx3x3   tanxx3x3
  • 等价无穷小的加减替换
    α ∼ α ′ , β ∼ β ′ { lim ⁡ α ′ β ′ ≠ 1 ⇒ α − β ∼ α ′ − β ′   lim ⁡ α ′ β ′ ≠ − 1 ⇒ α + β ∼ α ′ + β ′   lim ⁡ x → 0 x + s i n 2 x s i n x − 2 x = lim ⁡ x → 0 x + 2 x x − 2 x = − 3 \alpha \sim \alpha', \beta \sim \beta' \begin {cases} \lim \frac{\alpha'}{\beta'} \neq 1 \Rightarrow \alpha - \beta \sim \alpha' - \beta' \\\,\\ \lim \frac{\alpha'}{\beta'} \neq -1 \Rightarrow \alpha + \beta \sim \alpha' + \beta' \end {cases} \\\,\\ \lim_ {x \to 0} \frac{x+sin2x}{sinx - 2x} = \lim_ {x \to 0} \frac{x + 2x}{x - 2x} = -3 αα,ββlimβα=1αβαβlimβα=1α+βα+βx0limsinx2xx+sin2x=x0limx2xx+2x=3
  • 有界函数与无穷小的乘积仍为无穷小
    lim ⁡ x → 0 x s i n 1 x = 0 \lim_ {x \to 0} xsin\frac1{x} = 0 x0limxsinx1=0
④利用 Peano余项展开式

( 1 + x ) n = 1 + n x + n ( n − 1 ) 2 ! x 2 + n ( n − 1 ) ( n − 2 ) 3 ! x 3 + o ( x 3 )   s i n x = x − x 3 6 + o ( x 3 ) a r c s i n x = x + x 3 6 + o ( x 3 )   t a n x = x + x 3 3 + o ( x 3 ) a r c t a n x = x − x 3 3 + o ( x 3 ) \small (1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + o(x^3) \\\,\\ sinx = x - \frac{x^3}6 + o(x^3) \quad arcsinx = x + \frac{x^3}6 + o(x^3) \\\,\\ tanx = x + \frac{x^3}3 + o(x^3) \quad arctanx = x - \frac{x^3}3 + o(x^3) (1+x)n=1+nx+2!n(n1)x2+3!n(n1)(n2)x3+o(x3)sinx=x6x3+o(x3)arcsinx=x+6x3+o(x3)tanx=x+3x3+o(x3)arctanx=x3x3+o(x3)

  • 某些 0 / 0 0/0 0/0 形式的极限,不能用等价无穷小,用洛必达法则计算量大,考虑用 P e a n o \rm Peano Peano 余项的 M a c l a u r i n \rm Maclaurin Maclaurin 展开:
    ( 1 ) lim ⁡ x → 0 1 + 2 x + 1 − 2 x − 2 x 2 ( 2 ) lim ⁡ x → 0 a r c t a n x − a r c s i n x x 3 (1) \lim_ {x \to 0} \frac{\sqrt{1+2x} + \sqrt{1-2x} -2 }{x^2} \quad (2) \lim_ {x \to 0} \frac{arctanx - arcsinx}{x^3} (1)x0limx21+2x +12x 2(2)x0limx3arctanxarcsinx
⑤利用 Lagrange 中值定理

( 1 ) lim ⁡ x → 0 t a n ( t a n x ) − s i n ( s i n x ) x − s i n x ( 2 ) lim ⁡ x → 0 t a n ( s i n x ) − s i n ( t a n x ) x 3 \small \begin{aligned} &(1) \lim_{x \to 0}\frac{tan(tanx)-sin(sinx)}{x-sinx} \quad(2) \lim_{x \to 0}\frac{tan(sinx)-sin(tanx)}{x^3}\\ \end{aligned} (1)x0limxsinxtan(tanx)sin(sinx)(2)x0limx3tan(sinx)sin(tanx)

⑥利用夹逼准则

( 1 ) lim ⁡ n → ∞ ∫ 0 π 6 s i n n x d x ( 2 ) lim ⁡ n → ∞ ∫ 0 1 l n ( 1 + x ) n 1 + x 2 d x \small (1) \lim_{n \to \infty}\int_0^{\frac{\pi}6}sin^nx {\rm d}x \quad (2) \lim_{n \to \infty}\int_0^1\frac{ln(1+x)^n}{1+x^2} {\rm d}x (1)nlim06πsinnxdx(2)nlim011+x2ln(1+x)ndx


4.数列极限

①已知通项公式
  • 级数收敛的必要条件,通项 a n a_n an极限为0
    lim ⁡ n → ∞ n ! n n \lim_{n\to \infty} \frac{n!}{n^n} nlimnnn!
  • 三角函数的特殊极限
    ( 1 ) lim ⁡ n → ∞ s i n ( π n 2 + 1 ) ( 2 ) lim ⁡ n → ∞ n s i n ( 2 π n 2 + 1 ) (1) \lim_{n \to \infty}sin(\pi\sqrt{n^2+1}) \quad (2) \lim_{n \to \infty}nsin(2\pi\sqrt{n^2+1}) (1)nlimsin(πn2+1 )(2)nlimnsin(2πn2+1 )
②已知递推公式
  • 单调有界收敛准则

在这里插入图片描述

  • 数列极限定义
    ∑ n = 1 ∞ ∣ a n − A ∣ 收 敛 ⇒ lim ⁡ n → ∞ ∣ a n − A ∣ = 0 ⇒ lim ⁡ n → ∞ a n = A \sum_{n=1}^{\infty}|a_n - A| 收敛 \Rightarrow \lim_{n \to \infty}|a_n - A| = 0 \Rightarrow \lim_{n \to \infty}a_n=A n=1anAnlimanA=0nliman=A
③累加与累乘形式
  • 累加形式:能求出前n项和 S n S_n Sn,先考虑裂项求和,再考虑级数求和
    ( 1 ) lim ⁡ n → ∞ ∑ k = 1 n 1 k ( k + 1 ) ( 2 ) lim ⁡ n → ∞ ∑ k = 1 n 1 2 k ( 3 ) lim ⁡ n → ∞ ∑ k = 1 n k 2 k (1)\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k(k+1)} \quad (2)\lim_{n \to \infty} \sum_{k=1}^n\frac{1}{2^k} \quad (3) \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{2^k} (1)nlimk=1nk(k+1)1(2)nlimk=1n2k1(3)nlimk=1n2kk
  • 累加形式:能直接用积分和式
    ( 1 ) lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 + k 2 ( 2 ) lim ⁡ n → ∞ ∑ k = 1 n n n 2 + k 2 (1)\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k^2}} \quad (2)\lim_{n \to \infty} \sum_{k=1}^n \frac{n}{n^2 +k^2} (1)nlimk=1nn2+k2 1(2)nlimk=1nn2+k2n
  • 累乘形式:先取对数变成累加形式,再用积分和式
    ( 1 ) lim ⁡ n → ∞ ( 1 + 1 n ) 2 ( 1 + 2 n ) 2 . . . ( 1 + n n ) 2 n ( 2 ) lim ⁡ n → ∞ n ! n n ( 3 ) lim ⁡ n → ∞ ( n + 1 ) ( n + 2 ) . . . ( n + n ) n n \begin{aligned} & (1)\lim_{n \to \infty} \sqrt[n]{(1+\frac1n)^2(1+\frac2n)^2...(1+\frac nn)^2}\\ & (2)\lim_{n\to \infty} \frac{\sqrt[n]{n!}}{n} \quad (3)\lim_{n\to \infty} \frac{\sqrt[n]{(n+1)(n+2)...(n+n)}}{n} \end{aligned} (1)nlimn(1+n1)2(1+n2)2...(1+nn)2 (2)nlimnnn! (3)nlimnn(n+1)(n+2)...(n+n)
  • 累加形式:先放缩,再用夹逼准则+积分和式
    ( 1 ) lim ⁡ n → ∞ ∑ k = 1 n s i n k n π n + 1 k ( 2 ) lim ⁡ n → ∞ ∑ k = 1 n 1 ( n + k − 1 ) ( n + k ) ( 3 ) lim ⁡ n → ∞ ∑ k = 1 n k ( n + k + 1 ) ( n + k ) \begin{aligned} &(1) \lim_{n \to \infty} \sum_{k=1}^n\frac{sin\frac kn\pi}{n+\frac1k} \quad (2) \lim_{n \to \infty} \sum_{k=1}^n\frac{1}{\sqrt{(n+k-1)(n+k)}} \\ & (3) \lim_{n \to \infty} \sum_{k=1}^n\frac{k}{(n+k+1)(n+k)} \\ \end{aligned} (1)nlimk=1nn+k1sinnkπ(2)nlimk=1n(n+k1)(n+k) 1(3)nlimk=1n(n+k+1)(n+k)k
  • 常用积分和式
    lim ⁡ n → ∞ 1 n ∑ k = 1 n f ( k n ) = lim ⁡ n → ∞ 1 n ∑ k = 1 n f ( k ± 1 n ) = ∫ 0 1 f ( x ) d x lim ⁡ m , n → ∞ , ∞ 1 m n ∑ i = 1 m ∑ j = 1 n f ( i m , j n ) = ∫ 0 1 d x ∫ 0 1 f ( x , y ) d y \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^nf(\frac{k}{n}) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^nf(\frac{k \pm 1}{n})= \int_0^1 f(x){\rm d}x \\ \lim_{m,n \to \infty,\infty} \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n f(\frac{i}{m},\frac{j}{n}) = \int_0^1{\rm d}x \int_0^1 f(x,y)dy nlimn1k=1nf(nk)=nlimn1k=1nf(nk±1)=01f(x)dxm,n,limmn1i=1mj=1nf(mi,nj)=01dx01f(x,y)dy

第2章 一元函数微分

0.导数常用结论

  • f ′ ( x 0 ) f'(x_0) f(x0) 存在,可得
    lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 存 在 , f ( x ) 在 x 0 处 连 续 , f ( x ) 在 x 0 的 去 心 邻 域 内 存 在   f ( x 0 + Δ x ) − f ( x 0 ) = f ′ ( x 0 ) Δ x + o ( Δ x ) \small \begin{aligned} & \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}存在,f(x) 在 x_0处连续,f(x)在x_0的去心邻域内存在\\\,\\ & f(x_0+\Delta x)-f(x_0) = f'(x_0)\Delta x+o(\Delta x) \end{aligned} xx0limxx0f(x)f(x0)f(x)x0f(x)x0f(x0+Δx)f(x0)=f(x0)Δx+o(Δx)
  • f ′ ′ ( x 0 ) f''(x_0) f(x0) 存在,可得
    lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 存 在 , f ′ ( x ) 在 x 0 处 连 续 , f ′ ( x ) 在 x 0 的 去 心 邻 域 内 存 在 \small \begin{aligned} & \lim_{x \to x_0} \frac{f'(x)-f'(x_0)}{x-x_0}存在,f'(x) 在 x_0处连续,f'(x)在x_0的去心邻域内存在 \end{aligned} xx0limxx0f(x)f(x0)f(x)x0f(x)x0
  • f + ′ ( a ) > 0 , f − ′ ( b ) > 0 f'_+(a)>0, f'_-(b)>0 f+(a)>0,f(b)>0, 由极限保号性可得
    f + ′ ( a ) = lim ⁡ x → a + f ( x ) − f ( a ) x − a > 0 ⇒ ∃   x 0 ∈ ( a , a + δ ) , f ( x 0 ) > f ( a ) f − ′ ( b ) = lim ⁡ x → b − f ( x ) − f ( b ) x − b < 0 ⇒ ∃   x 0 ∈ ( b − δ , b ) , f ( x 0 ) > f ( b ) \begin{aligned} &f'_+(a) = \lim_{x \to a^+} \frac{f(x)-f(a)}{x-a} > 0 \Rightarrow \exists\, x_0 \in(a, a + \delta),f(x_0) > f(a) \\ &f'_-(b) = \lim_{x \to b^-} \frac{f(x)-f(b)}{x-b} < 0 \Rightarrow \exists\, x_0 \in(b - \delta,b),f(x_0) > f(b) \\ \end{aligned} f+(a)=xa+limxaf(x)f(a)>0x0(a,a+δ)f(x0)>f(a)f(b)=xblimxbf(x)f(b)<0x0(bδ,b)f(x0)>f(b)

1.常用求导

  • y = f ( x ) 由 F ( x , y ) 确 定 y = f(x)由F(x,y)确定 y=f(x)F(x,y)
    d y d x = − F x ′ F y ′ \frac{dy}{dx} = - \frac{F_x'}{F_y'} \\ dxdy=FyFx
  • y = f ( x ) 由 { x = x ( t ) y = y ( t ) 确 定 y = f(x) 由 \begin{cases} x = x(t) \\ y = y(t)\end{cases} 确定 y=f(x){x=x(t)y=y(t)
    d y d x = d y / d t d x / d t d 2 y d x 2 = d ( d y d x ) / d t d x / d t \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \quad \frac{d^2y}{dx^2} = \frac{d(\frac{dy}{dx})/dt}{dx/dt} dxdy=dx/dtdy/dtdx2d2y=dx/dtd(dxdy)/dt
  • y = f ( x ) 由 r = r ( θ ) 确 定 y = f(x) 由 r=r(\theta) 确定 y=f(x)r=r(θ)
    d y d x = d y / d θ d x / d θ d 2 y d x 2 = d ( d y d x ) / d θ d x / d θ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \quad \frac{d^2y}{dx^2} = \frac{d(\frac{dy}{dx})/d\theta}{dx/d\theta} dxdy=dx/dθdy/dθdx2d2y=dx/dθd(dxdy)/dθ
  • y = f ( x ) 的 反 函 数 x = g ( y ) y = f(x)的反函数x = g(y) y=f(x)x=g(y)
    d x d y = 1 d y d x = 1 f ′ ( x ) d 2 x d y 2 = d ( d x d y ) / d x d y / d x = − f ′ ′ ( x ) [ f ′ ( x ) ] 3 \frac{dx}{dy} = \frac1{\frac{dy}{dx}} = \frac{1}{f'(x)} \quad \frac{d^2x}{dy^2} = \frac{d(\frac{dx}{dy})/dx}{dy/dx} = \frac{-f''(x)}{[f'(x)]^3} dydx=dxdy1=f(x)1dy2d2x=dy/dxd(dydx)/dx=[f(x)]3f(x)
  • f ( n ) ( x ) f^{(n)}(x) f(n)(x), 将 f ( x ) f(x) f(x) x 0 x_0 x0处幂级数展开,与 T a y l o r Taylor Taylor 展开对比
    f ( x ) = ∑ i = 0 ∞ a n ( x − x 0 ) n = ∑ i = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f ( n ) ( x 0 ) = a n ⋅ n ! f(x) = \sum_{i=0}^\infty a_n{(x-x_0)^n} = \sum_{i=0}^\infty \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \\ f^{(n)}(x_0) = a_n·n! f(x)=i=0an(xx0)n=i=0n!f(n)(x0)(xx0)nf(n)(x0)=ann!

2.极值点和拐点

  • 极值点仅为横坐标 x 0 x_0 x0,拐点为 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))
  • 费马定理 f ( x ) f(x) f(x) x 0 x_0 x0 处取极值且可导 ⇒ f ′ ( x 0 ) = 0 \Rightarrow f'(x_0) = 0 f(x0)=0
  • 极值点的判断
satisfy
satisfy
驻点
第一充分条件
第二充分条件
极值点
不可导点
第一充分条件
  • 拐点的判断
satisfy
satisfy
二阶导为0
第一充分条件
第二充分条件
拐点
二阶导不存在
第一充分条件

3.渐近线和曲率

  • 水平渐近线
  • 铅直渐近线
  • 斜渐近线
    k = lim ⁡ n → ∞ f ( x ) x b = lim ⁡ n → ∞ [ f ( x ) − k x ] k=\lim_{n \to \infty} \frac{f(x)}{x}\quad b= \lim_{n \to \infty} [f(x)-kx] k=nlimxf(x)b=nlim[f(x)kx]
  • 曲率和曲率半径
    k = ∣ y ′ ′ ∣ ( 1 + ( y ′ ) 2 ) 3 2 R = 1 k k = \frac{|y''|}{(1+(y')^2)^{\frac32}} \quad R = \frac1k k=(1+(y)2)23yR=k1

4.等式的证明

①零点存在性问题
  • 连续函数的零点存在性定理
  • 连续函数的介值定理、平均值定理,常用于证明不含导数项的等式

在这里插入图片描述

  • Rolle中值定理 逆推原函数:
    f ( x ) f ′ ( x ) = 0 ⇒ F ( x ) = f 2 ( x ) f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = 0 ⇒ F ( x ) = f ( x ) g ( x ) f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) = 0 ⇒ F ( x ) = f ( x ) g ( x ) f ′ ′ ( x ) g ( x ) − f ( x ) g ′ ′ ( x ) = 0 ⇒ F ( x ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x )   x f ′ ( x ) + n f ( x ) = 0 ⇒ F ( x ) = x n f ( x ) x f ′ ( x ) − n f ( x ) = 0 ⇒ F ( x ) = x − n f ( x ) f ′ ( x ) + f ( x ) = 0 ⇒ F ( x ) = e x f ( x ) f ′ ( x ) − f ( x ) = 0 ⇒ F ( x ) = e − x f ( x ) f ′ ( x ) + k f ( x ) = 0 ⇒ F ( x ) = e k x f ( x ) f ′ ( x ) + g ′ ( x ) f ( x ) = 0 ⇒ F ( x ) = e g ( x ) f ( x ) f ′ ′ ( x ) − f ( x ) = 0 ⇒ F ( x ) = { e x    [ f ′ ( x ) − f ( x ) ] e − x [ f ′ ( x ) + f ( x ) ] \begin{aligned} f(x)f'(x) = 0 &\quad \Rightarrow \quad F(x) = f^2(x) \\ f'(x)g(x) + f(x)g'(x) = 0 &\quad \Rightarrow \quad F(x) = f(x)g(x) \\ f'(x)g(x) - f(x)g'(x) = 0 &\quad \Rightarrow \quad F(x) = \frac{f(x)}{g(x)} \\ f''(x)g(x) - f(x)g''(x) = 0 &\quad \Rightarrow \quad F(x) = f'(x)g(x) - f(x)g'(x) \\\,\\ xf'(x) + nf(x) = 0 &\quad \Rightarrow \quad F(x) = x^nf(x)\\ xf'(x) - nf(x) = 0 &\quad \Rightarrow \quad F(x) = x^{-n}f(x)\\ f'(x) + f(x) = 0 &\quad \Rightarrow \quad F(x) = e^xf(x) \\ f'(x) - f(x) = 0 &\quad \Rightarrow \quad F(x) = e^{-x}f(x) \\ f'(x) + kf(x) = 0 &\quad \Rightarrow \quad F(x) = e^{kx}f(x) \\ f'(x) + g'(x)f(x) = 0 &\quad \Rightarrow \quad F(x) = e^{g(x)}f(x) \\ f''(x) - f(x) = 0 &\quad \Rightarrow \quad F(x) = \begin{cases} e^x \space\space[f'(x) - f(x)] \\ e^{-x}[f'(x) + f(x)] \\ \end{cases} \end{aligned} f(x)f(x)=0f(x)g(x)+f(x)g(x)=0f(x)g(x)f(x)g(x)=0f(x)g(x)f(x)g(x)=0xf(x)+nf(x)=0xf(x)nf(x)=0f(x)+f(x)=0f(x)f(x)=0f(x)+kf(x)=0f(x)+g(x)f(x)=0f(x)f(x)=0F(x)=f2(x)F(x)=f(x)g(x)F(x)=g(x)f(x)F(x)=f(x)g(x)f(x)g(x)F(x)=xnf(x)F(x)=xnf(x)F(x)=exf(x)F(x)=exf(x)F(x)=ekxf(x)F(x)=eg(x)f(x)F(x)={ex  [f(x)f(x)]ex[f(x)+f(x)]
  • 某些不含导数项的等式,考虑用变限积分函数作为原函数
  • 某些等式已知条件不足,考虑 用2次Rolle定理

在这里插入图片描述
在这里插入图片描述

②双中值问题-Lagrange

在这里插入图片描述

③双中值问题-Cauchy

在这里插入图片描述
在这里插入图片描述


5.不等式的证明

①常用转化

f ( x ) − f ( a ) = ∫ a x f ′ ( t ) d t ∫ a b f ( x ) d x − ( b − a ) f ( a ) = ∫ a b [ f ( x ) − f ( a ) ] d x = ( b − a ) [ f ( ξ ) − f ( a ) ] ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x [ ∫ a b f ( x ) g ( x ) d x ] 2 ≤ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x \small \begin{aligned} &f(x) - f(a) = \int_a^x f'(t)dt \\ &\int_a^b f(x)dx - (b-a)f(a) = \int_a^b[f(x)-f(a)]dx= (b-a)[f(\xi)-f(a)]\\ &|\int_a^b f(x){\rm d}x| \leq \int_a^b |f(x)|{\rm d}x\\ &[\int_a^b f(x)g(x){\rm d}x]^2 \leq \int_a^b f^2(x){\rm d}x \cdot \int_a^b g^2(x){\rm d}x \end{aligned} f(x)f(a)=axf(t)dtabf(x)dx(ba)f(a)=ab[f(x)f(a)]dx=(ba)[f(ξ)f(a)]abf(x)dxabf(x)dx[abf(x)g(x)dx]2abf2(x)dxabg2(x)dx

②单调性、最值、凹凸性

构造变限函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

③证明不等式-Lagrange

在这里插入图片描述
在这里插入图片描述

④证明不等式-Taylor

在这里插入图片描述


第3章 一元函数积分

0.积分常用结论

  • 积分中值定理推广
    f ( x ) 在 [ a , b ] 上 连 续 , 存 在 ξ ∈ ( a , b ) , ∫ a b f ( x ) d x = ( b − a ) f ( ξ ) f(x)在[a,b]上连续,存在\xi \in (a,b),\int_a^bf(x)dx = (b-a)f(\xi) f(x)[a,b]ξ(a,b),abf(x)dx=(ba)f(ξ)
  • 定积分存在定理
函数连续
可积分
函数有界
存在有限个间断点
函数有界
  • 原函数(不定积分)存在定理
must
maybe
函数连续
原函数存在
函数存在振荡间断点
  • 变限积分存在,定积分也一定存在,但原函数不一定存在
    f ( x ) 在 [ a , b ] 上 连 续 ⇒ ∫ a x f ( t ) d t 在 [ a , b ] 上 可 导 f ( x ) 在 [ a , b ] 上 可 积 ⇒ ∫ a x f ( t ) d t 在 [ a , b ] 上 连 续 \begin{aligned} & f(x)在[a,b]上连续 \Rightarrow \int_a^xf(t)dt在 [a,b] 上可导\\ & f(x)在[a,b]上可积 \Rightarrow \int_a^xf(t)dt在 [a,b] 上连续\\ \end{aligned} f(x)[a,b]axf(t)dt[a,b]f(x)[a,b]axf(t)dt[a,b]
  • f ( x ) f(x) f(x) 可导, F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)
    • f ( x ) 奇 ⇒ ∫ a x f ( t ) d t 偶 f(x)奇 \Rightarrow \int_a^xf(t)\rm dt偶 f(x)axf(t)dt
    • f ( x ) 偶 ⇒ ∫ 0 x f ( t ) d t 奇 f(x)偶 \Rightarrow \int_0^xf(t)\rm dt奇 f(x)0xf(t)dt
    • F ( x ) 偶 ⇐ f ( x ) 奇 ⇒ f ′ ( x ) 偶 F(x)偶 \Leftarrow f(x)奇 \Rightarrow f'(x)偶 F(x)f(x)f(x)
    • F ( x ) 奇 ⇍ f ( x ) 偶 ⇒ f ′ ( x ) 奇 F(x)奇 \nLeftarrow f(x)偶 \Rightarrow f'(x)奇 F(x)f(x)f(x)
    • F ( x ) 周 期 为 T ⇍ f ( x ) 周 期 为 T ⇒ f ′ ( x ) 周 期 为 T F(x)周期为T \nLeftarrow f(x)周期为T \Rightarrow f'(x)周期为T F(x)Tf(x)Tf(x)T

1.变限积分的求导

  • 定积分的变限函数求导
    ∫ 0 x f ( x − t ) d t = u = x − t ∫ 0 x t f ( x 2 − t 2 ) d t = u 2 = x 2 − t 2 ∫ 0 x t 2 f ( x 3 − t 3 ) d t = u 3 = x 3 − t 3 \begin{aligned} &\int_0^xf(x-t)dt \xlongequal{u = x-t} \\ &\int_0^x tf(x^2-t^2)dt \xlongequal{u^2 = x^2-t^2} \\ &\int_0^x t^2f(x^3-t^3)dt \xlongequal{u^3 = x^3-t^3} \end{aligned} 0xf(xt)dtu=xt 0xtf(x2t2)dtu2=x2t2 0xt2f(x3t3)dtu3=x3t3
  • 定积分的变限函数求偏导
    f ( x , y ) = ∫ 0 x y e x t 2 d t , ∂ 2 f ∂ x ∂ y = e x 3 y 2 + 3 x 3 y 2 e x 3 y 2 f(x,y)=\int_0^{xy}e^{xt^2}dt,\frac{\partial^2 f}{\partial x\partial y} = e^{x^3y^2}+3x^3y^2e^{x^3y^2} f(x,y)=0xyext2dtxy2f=ex3y2+3x3y2ex3y2
  • 二重积分的变限函数求导:上限或下限不纯,先交换积分次序
    ( 1 ) lim ⁡ t → 0 1 t 2 ∫ 0 t d x ∫ x t e − ( x − y ) 2 d y ( 2 ) lim ⁡ t → 0 + 1 t 3 ∫ 0 t d x ∫ x 2 t 2 a r c t a n [ c o s ( 3 x + 5 y ) ] d y \begin{aligned} &(1) \lim_{t \to 0} \frac{1}{t^2} \int_0^tdx \int_x^t e^{-(x-y)^2}dy\\ &(2) \lim_{t \to 0^+} \frac{1}{t^3} \int_0^tdx \int_{x^2}^{t^2}arctan[cos(3x + 5\sqrt y)]dy \end{aligned} (1)t0limt210tdxxte(xy)2dy(2)t0+limt310tdxx2t2arctan[cos(3x+5y )]dy

2.常用不定积分

∫ t a n x   d x = − l n ∣ c o s x ∣ + C ∫ s e c 2 x   d x = t a n x + C ∫ s e c x t a n x   d x = s e c x + C ∫ s e c x   d x = l n ∣ s e c x + t a n x ∣ + C ∫ c o t x   d x = l n ∣ s i n x ∣ + C ∫ c s c 2 x   d x = − c o t x + C ∫ c s c x c o t x   d x = − c s c x + C ∫ c s c x   d x = l n ∣ c s c x − c o t x ∣ + C   ∫ 1 x 2 + a 2 d x = 1 a a r c t a n x a + C ∫ 1 x 2 − a 2 d x = 1 2 a l n ∣ x − a x + a ∣ + C ∫ 1 a 2 − x 2 d x = a r c s i n x a + C ∫ 1 a 2 − x 2 d x = 1 2 a l n ∣ a + x a − x ∣ + C ∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ \begin{aligned} &\int tanx \,dx = -ln|cosx| + C \\ &\int sec^2x\,dx = tanx + C \\ &\int secx tanx \,dx = secx + C\\ &\int secx\, dx = ln|secx+tanx| + C \\ \end{aligned} \begin{aligned} &\int cotx \,dx = ln|sinx| + C \\ &\int csc^2x\,dx = -cotx + C \\ &\int cscx cotx \,dx = -cscx + C \\ &\int cscx\, dx = ln|cscx - cotx| + C \\ \end{aligned} \\\,\\ \begin{aligned} & \int \frac1{x^2 + a^2} dx = \frac1aarctan\frac{x}{a} + C \quad \int \frac1{x^2 - a^2} dx = \frac{1}{2a}ln|\frac{x-a}{x+a}| + C\\ & \int \frac1{\sqrt{a^2 - x^2}}dx = arcsin\frac{x}{a} + C \quad \int \frac1{a^2 - x^2} dx = \frac{1}{2a}ln|\frac{a+x}{a-x}| + C \\ & \int \frac1{\sqrt{x^2 \pm a^2}}dx = ln|x+\sqrt{x^2 \pm a^2}| \\ \end{aligned} tanxdx=lncosx+Csec2xdx=tanx+Csecxtanxdx=secx+Csecxdx=lnsecx+tanx+Ccotxdx=lnsinx+Ccsc2xdx=cotx+Ccscxcotxdx=cscx+Ccscxdx=lncscxcotx+Cx2+a21dx=a1arctanax+Cx2a21dx=2a1lnx+axa+Ca2x2 1dx=arcsinax+Ca2x21dx=2a1lnaxa+x+Cx2±a2 1dx=lnx+x2±a2


3.常用换元积分

  • 三角函数换元
    • a 2 − x 2 \sqrt{a^2 - x^2} a2x2 , 令 x = a s i n t , d x = a c o s t   d t x = asint, dx = acost\,dt x=asint,dx=acostdt
    • a 2 + x 2 \sqrt{a^2 + x^2} a2+x2 , 令 x = a t a n t , d x = a s e c 2 t   d t x = atant, dx = asec^2t\,dt x=atant,dx=asec2tdt
    • x 2 − a 2 \sqrt{x^2 - a^2} x2a2 , 令 x = a s e c t , d x = a s e c t   t a n t   d t x = asect, dx = asect\,tant\,dt x=asect,dx=asecttantdt
  • 根号下有二次多项式:先配方再换元
    ∫ 0 4 ( 1 + x ) 4 x − x 2 d x = ∫ 0 4 ( 1 + x ) 4 − ( x − 2 ) 2 d x \int_0^4(1+x)\sqrt{4x-x^2}dx = \int_0^4(1+x)\sqrt{4-(x-2)^2}dx 04(1+x)4xx2 dx=04(1+x)4(x2)2 dx
  • 根号换元:含 a x + b n   , a x + b m \sqrt[n]{ax+b} \,, \sqrt[m]{ax+b} nax+b ,max+b 的积分,令 t = a x + b k t = \sqrt[k]{ax+b} t=kax+b , k 为 m 和 n 的最小公倍数
    ∫ d x x + 1 − x + 1 3 \int \frac{dx}{\sqrt{x+1}-\sqrt[3]{x+1}} x+1 3x+1 dx
  • 倒代换:分子次数低、分母次数高时,考虑用 x = 1 t x = \frac1t x=t1
    ( 1 ) ∫ d x x 100 + x = ∫ − 1 t 2 1 t 100 + 1 t = ∫ − t 98 t 99 + 1 = − 1 99 ∫ d t 99 t 99 + 1   ( 2 ) ∫ d x x x 4 + x 2 + 1 = ∫ − 1 t 2 1 t 1 t 4 + 1 t 2 + 1 d t = ∫ − t t 4 + t 2 + 1 d t (1) \int \frac{dx}{x^{100} + x} = \int \frac{-\frac1{t^2}}{\frac1{t^{100}} + \frac1{t}} = \int \frac{-t^{98}}{t^{99}+1} = -\frac{1}{99} \int \frac{dt^{99}}{t^{99}+1} \\\,\\ (2) \int \frac{dx}{x\sqrt{x^4+x^2+1}} = \int \frac{-\frac1{t^2}}{\frac1t \sqrt{\frac1{t^4}+\frac1{t^2}+1}}dt = \int \frac{-t}{\sqrt{t^4+t^2+1}}dt (1)x100+xdx=t1001+t1t21=t99+1t98=991t99+1dt99(2)xx4+x2+1 dx=t1t41+t21+1 t21dt=t4+t2+1 tdt
  • 分子分母同除以某式
    ( 1 ) ∫ x 5 − x x 8 + 1 d x ( 2 ) ∫ d x 1 + x 4 ( 3 ) ∫ e 3 x + e x e 4 x + e 2 x + 1 d x \begin{aligned} &(1) \int \frac{x^5-x}{x^8+1}dx \quad (2) \int \frac{dx}{1+x^4} \quad (3) \int \frac{e^{3x}+e^x}{e^{4x}+e^{2x}+1}dx \end{aligned} (1)x8+1x5xdx(2)1+x4dx(3)e4x+e2x+1e3x+exdx

4.常用分部积分

  • ∫ x n e x d x = ∫ x n d e x \int x^n e^x dx = \int x^n {\rm d}e^x xnexdx=xndex
  • ∫ x n s i n x d x = − ∫ x n d c o s x \int x^n sinxdx = -\int x^n{\rm d}cosx xnsinxdx=xndcosx
  • ∫ x n c o s x   d x = ∫ x n d s i n x \int x^n cosx\,dx = \int x^n {\rm d}sinx xncosxdx=xndsinx
  • ∫ x n l n x   d x = 1 n + 1 ∫ l n x d x n + 1 \int x^n lnx\, dx = \frac{1}{n+1} \int lnx {\rm d}x^{n+1} xnlnxdx=n+11lnxdxn+1
  • ∫ x n a r c t a n x   d x = 1 n + 1 ∫ a r c t a n x d x n + 1 \int x^n arctanx\,dx = \frac{1}{n+1} \int arctanx {\rm d}x^{n+1} xnarctanxdx=n+11arctanxdxn+1
  • ∫ x n a r c s i n x   d x = 1 n + 1 ∫ a r c s i n x d x n + 1 \int x^n arcsinx\, dx = \frac{1}{n+1} \int arcsinx {\rm d}x^{n+1} xnarcsinxdx=n+11arcsinxdxn+1
  • 使用2次分部积分,移项解方程:
    ( 1 ) ∫ e x s i n x   d x ( 2 ) ∫ x 2 + a 2   d x (1) \int e^xsinx \space dx \quad (2)\int \sqrt{x^2 + a^2} \space dx \\ (1)exsinx dx(2)x2+a2  dx

5.有理函数的积分

  • 有理函数:两个多项式函数的商
    R ( x ) = P n ( x ) Q m ( x ) = a 0 + a 1 x + . . . + a n x n b 0 + b 1 x + . . . + b m x m R(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_0 + a_1 x + ...+ a_nx^n}{b_0 + b_1 x + ...+ b_mx^m} R(x)=Qm(x)Pn(x)=b0+b1x+...+bmxma0+a1x+...+anxn
  • 假分式:满足 n ≥ m n \geq m nm
    • 利用除法将 R ( x ) R(x) R(x) 化为多项式和真分式之和
  • 真分式:满足 n < m n < m n<m
    • 首先将 Q m ( x ) Q_m(x) Qm(x) 因式分解
    • 分解后含有 ( x − a ) k (x-a)^k (xa)k,则和式对应含有
      A 1 ( x − a ) + A 2 ( x − a ) 2 + . . . + A k ( x − a ) k \frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + ... + \frac{A_k}{(x-a)^k} (xa)A1+(xa)2A2+...+(xa)kAk
    • 分解后含有 ( x 2 + p x + q ) k (x^2 + px +q)^k (x2+px+q)k,则和式对应含有
      A 1 x + B 1 ( x 2 + p x + q ) + A 2 x + B 2 ( x 2 + p x + q ) 2 + . . . + A k x + B k ( x 2 + p x + q ) k \frac{A_1x+B_1}{(x^2 + px +q)} + \frac{A_2x+B_2}{(x^2 + px +q)^2} + ... + \frac{A_kx+B_k}{(x^2 + px +q)^k} (x2+px+q)A1x+B1+(x2+px+q)2A2x+B2+...+(x2+px+q)kAkx+Bk

6.三角函数有理式的积分

∫ C s i n x + D c o s x A s i n x + B c o s x d x = ∫ M ( A c o s x − B s i n x ) A s i n x + B c o s x d x + ∫ N ( A s i n x + B c o s x ) A s i n x + B c o s x d x   ( 1 ) ∫ d x 1 + s i n x = ∫ d x 1 + 2 s i n x 2 c o s x 2 = ∫ d x ( c o s x 2 + s i n x 2 ) 2 = t a n ( x 2 − π 4 ) + C ( 2 ) ∫ d x 1 + c o s x = ∫ d x 2 c o s 2 x 2 = 1 2 ∫ s e c 2 x 2 d x = t a n x 2 + C ( 3 ) ∫ d x 1 + c o s x + s i n x = ∫ d x 2 c o x 2 x 2 + 2 s i n x 2 c o s x 2 ( 4 ) ∫ d x 2 + c o s x + s i n x = ∫ d x 2 + 2 c o s ( x − π 4 ) \small \int \frac{Csinx + Dcosx}{Asinx + Bcosx} dx = \int \frac {M(Acosx - Bsinx)}{Asinx + Bcosx} dx + \int \frac {N(Asinx + Bcosx)}{Asinx + Bcosx} dx \\\,\\ \begin{aligned} &(1) \int \frac{dx}{1+sinx} = \int \frac{dx}{1+2sin{\frac x2}cos{\frac x2}} = \int \frac{dx}{(cos{\frac x2}+sin{\frac x2})^2} = tan(\frac x2 - \frac {\pi}4) + C \\ &(2)\int \frac{dx}{1+cosx} = \int \frac{dx}{2cos^2\frac{x}{2}} = \frac12 \int sec^2\frac{x}2 dx = tan\frac x2 + C \\ &(3) \int \frac{dx}{1+cosx+sinx} = \int \frac{dx}{2cox^2\frac x2 + 2sin\frac x2cos\frac x2} \\ &(4) \int \frac{dx}{\sqrt{2}+cosx+sinx} = \int \frac{dx}{\sqrt{2} + \sqrt{2}cos(x -\frac{\pi}{4})} \end{aligned} Asinx+BcosxCsinx+Dcosxdx=Asinx+BcosxM(AcosxBsinx)dx+Asinx+BcosxN(Asinx+Bcosx)dx(1)1+sinxdx=1+2sin2xcos2xdx=(cos2x+sin2x)2dx=tan(2x4π)+C(2)1+cosxdx=2cos22xdx=21sec22xdx=tan2x+C(3)1+cosx+sinxdx=2cox22x+2sin2xcos2xdx(4)2 +cosx+sinxdx=2 +2 cos(x4π)dx


7.定积分的常用公式

  • ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^{a}f(x)dx = \int_0^a[f(x) + f(-x)]dx aaf(x)dx=0a[f(x)+f(x)]dx
    ( 1 ) ∫ − π 4 π 4 x 1 + s i n x d x ( 2 ) ∫ − π 2 π 2 s i n x 1 + e − x d x (1) \int_{-\frac{\pi}4}^{\frac{\pi}4} \frac{x}{1+sinx} dx \quad (2) \int_{-\frac{\pi}2}^{\frac{\pi}2} \frac{sinx}{1+e^{-x}} dx (1)4π4π1+sinxxdx(2)2π2π1+exsinxdx
  • ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int_0^{\pi}xf(sinx)dx = \frac{\pi}{2}\int_0^{\pi}f(sinx)dx = \pi \int_0^{\frac{\pi}2}f(sinx)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
    ∫ 0 π x s i n x 1 + c o s 2 x d x = π ∫ 0 π 2 − d c o s x 1 + c o s 2 x \int_0^{\pi}\frac{xsinx}{1+ cos^2x} dx =\pi \int_0^{\frac{\pi}2}\frac{-dcosx}{1+ cos^2x} 0π1+cos2xxsinxdx=π02π1+cos2xdcosx
  • ∫ 0 π 2 f ( s i n x , c o s x ) d x = ∫ 0 π 2 f ( c o s x , s i n x ) d x \int_0^{\frac{\pi}2}f(sinx, cosx)dx = \int_0^{\frac{\pi}2}f(cosx, sinx)dx 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
    ∫ 0 π 2 s i n x s i n x + c o s x d x = ∫ 0 π 2 c o s x s i n x + c o s x d x \int_0^{\frac{\pi}2}\frac{sinx}{sinx + cosx} dx = \int_0^{\frac{\pi}2}\frac{cosx}{sinx + cosx} dx 02πsinx+cosxsinxdx=02πsinx+cosxcosxdx
  • ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}2}f(sinx)dx = \int_0^{\frac{\pi}2}f(cosx)dx 02πf(sinx)dx=02πf(cosx)dx
    ∫ 0 π 2 s i n n x   d x = ∫ 0 π 2 c o s n x   d x = { n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 , n = 2 k + 1 且 n ≥ 3   n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 , n = 2 k \begin{aligned} & \int _0 ^\frac{\pi}{2} sin^nx\,dx = \int _0 ^\frac{\pi}{2} cos^nx\,dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1,n = 2k+1且n \geq 3\\ \,\\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, n = 2k \\ \end{cases} \\ \end{aligned} 02πsinnxdx=02πcosnxdx=nn1n2n3321n=2k+1n3nn1n2n3212πn=2k
  • W a l l i s 公 式 Wallis公式 Wallis
    ∫ 0 π s i n n x   d x = { 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 , n = 2 k + 1 且 n ≥ 3   2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 , n = 2 k ∫ 0 π c o s n x   d x = { 0 , n = 2 k + 1   2 ∫ 0 π 2 s i n n x   d x , n = 2 k ∫ 0 2 π s i n n x   d x = ∫ 0 2 π c o s n x   d x = { 0 , n = 2 k + 1   4 ∫ 0 π 2 s i n n x   d x , n = 2 k \begin{aligned} & \int _0 ^\pi sin^nx\,dx = \begin{cases} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1,n = 2k+1且n \geq 3\\ \,\\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, n = 2k \\ \end{cases} \\ & \int _0 ^\pi cos^nx\,dx = \begin{cases} 0,n = 2k+1 \\ \,\\ 2 \int _0 ^\frac{\pi}{2} sin^nx\,dx,n = 2k \\ \end{cases} \\ & \int _0 ^{2\pi} sin^nx\,dx = \int _0 ^{2\pi} cos^nx\,dx = \begin{cases} 0,n = 2k+1 \\ \,\\ 4 \int _0 ^\frac{\pi}{2} sin^nx\,dx,n = 2k \end{cases} \end{aligned} 0πsinnxdx=2nn1n2n3321n=2k+1n32nn1n2n3212πn=2k0πcosnxdx=0n=2k+1202πsinnxdxn=2k02πsinnxdx=02πcosnxdx=0n=2k+1402πsinnxdxn=2k

8.定积分的应用

①函数的平均值

A = 1 b − a ∫ a b f ( x ) d x A = \frac{1}{b-a}\int_a^bf(x)dx A=ba1abf(x)dx

2016年数二
>在这里插入图片描述

②平面曲线的弧长
  • y = f ( x ) , a ≤ x ≤ b : s = ∫ a b 1 + f ′ ( x ) 2 d x y = f(x), a \le x \le b:s = \int_a^b \sqrt{1+f'(x)^2}dx y=f(x),axbs=ab1+f(x)2 dx
  • r = r ( θ ) , θ 1 ≤ θ ≤ θ 2 : s = ∫ θ 1 θ 2 r ( θ ) 2 + r ′ ( θ ) 2 d θ r = r(\theta), \theta_1 \le \theta \le \theta_2:s = \int_{\theta_1}^{\theta_2}\sqrt{r(\theta)^2+r'(\theta)^2}d\theta r=r(θ),θ1θθ2s=θ1θ2r(θ)2+r(θ)2 dθ
  • x = x ( t ) , y = y ( t ) , t 1 ≤ t ≤ t 2 : s = ∫ t 1 t 2 x ′ ( t ) 2 + y ′ ( t ) 2 d t x = x(t),y =y(t), t_1 \le t \le t_2:s = \int_{t_1}^{t_2}\sqrt{x'(t)^2+y'(t)^2}dt x=x(t),y=y(t),t1tt2s=t1t2x(t)2+y(t)2 dt
③旋转曲面的面积
  • 曲线 y = f ( x ) , a ≤ x ≤ b y = f(x), a \le x \le b y=f(x),axb 绕 x 轴旋转一周的曲面面积
    S x = 2 π ∫ a b ∣ f ( x ) ∣ 1 + f ′ ( x ) 2 d x S_x = 2\pi\int_a^b|f(x)|\sqrt{1+f'(x)^2}dx Sx=2πabf(x)1+f(x)2 dx
  • 曲线 { x = x ( t ) y = y ( t ) , t 1 ≤ t ≤ t 2 \begin{cases} x = x(t)\\y =y(t)\end{cases}, t_1 \le t \le t_2 {x=x(t)y=y(t),t1tt2 分别绕 x 轴和 y 轴旋转一周的曲面面积
    S x = 2 π ∫ t 1 t 2 ∣ y ( t ) ∣ x ′ ( t ) 2 + y ′ ( t ) 2 d t   S y = 2 π ∫ t 1 t 2 ∣ x ( t ) ∣ x ′ ( t ) 2 + y ′ ( t ) 2 d t S_x = 2\pi\int_{t_1}^{t_2}|y(t)|\sqrt{x'(t)^2+y'(t)^2}dt \\\,\\ S_y = 2\pi\int_{t_1}^{t_2}|x(t)|\sqrt{x'(t)^2+y'(t)^2}dt Sx=2πt1t2y(t)x(t)2+y(t)2 dtSy=2πt1t2x(t)x(t)2+y(t)2 dt
  • 例题
    • 求曲线 ( x − 2 ) 2 + y 2 = 1 (x-2)^2 + y^2 = 1 (x2)2+y2=1 绕 y 轴旋转一周曲面的面积
    • 求曲线 y = x 3 3 + 2 x , 0 ≤ x ≤ 1 y = \frac{x^3}{3} + 2x,0 \le x \le 1 y=3x3+2x,0x1 绕直线 4 x − 3 y = 0 4x-3y = 0 4x3y=0 旋转一周曲面的面积
④旋转体的体积
  • 截面法:曲线 y = f ( x ) , a ≤ x ≤ b y = f(x),a \le x \le b y=f(x),axb x = a , x = b , y = 0 x=a, x=b, y=0 x=a,x=b,y=0 围成的图形,绕 x 轴旋转一周形成的旋转体体积
    V x = π ∫ a b f 2 ( x ) d x V_x = \pi\int_a^bf^2(x)dx Vx=πabf2(x)dx
  • 柱壳法:曲线 y = f ( x ) , a ≤ x ≤ b y = f(x),a \le x \le b y=f(x),axb x = a , x = b , y = 0 x=a, x=b, y=0 x=a,x=b,y=0 围成的图形,绕 y 轴旋转一周形成的旋转体体积
    V y = 2 π ∫ a b x f ( x ) d x V_y = 2\pi\int_a^bxf(x)dx Vy=2πabxf(x)dx

9.广义积分

①基本概念
  • 若 a 和 b 都是奇点:
    ∫ a b f ( x ) d x = ∫ a x 0 f ( x ) d x + ∫ x 0 b f ( x ) d x , a < x 0 < b \int_a^b f(x) dx = \int_a^{x_0} f(x)dx + \int_{x_0}^b f(x)dx, a < x_0 < b abf(x)dx=ax0f(x)dx+x0bf(x)dx,a<x0<b
  • 若 a 是奇点:
    ∫ a + ∞ f ( x ) d x = ∫ a x 0 f ( x ) d x + ∫ x 0 + ∞ f ( x ) d x , a < x 0 < + ∞ \int_a^{+\infty} f(x) dx = \int_a^{x_0} f(x)dx + \int_{x_0}^{+\infty} f(x)dx, a < x_0 < +\infty a+f(x)dx=ax0f(x)dx+x0+f(x)dx,a<x0<+
  • 若 c 为区间 ( a , b ) (a,b) (a,b) 内部的奇点:
    ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x) dx = \int_a^c f(x)dx + \int_{c}^b f(x)dx abf(x)dx=acf(x)dx+cbf(x)dx
  • f ( x ) f(x) f(x)为奇函数, f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+) 上的积分不一定为0:
    ∫ 0 + ∞ x 1 + x 2 d x 发 散 ⇒ ∫ − ∞ + ∞ x 1 + x 2 d x 发 散 \int_{0}^{+\infty} \frac{x}{1+x^2} dx发散 \Rightarrow \int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx发散 0+1+x2xdx+1+x2xdx

②含三角函数绝对值

( 1 ) ∫ 0 n π ∣ s i n x ∣ d x ( 2 ) lim ⁡ x → + ∞ 1 x ∫ 0 x ∣ s i n t ∣ d t ( 3 ) ∫ 0 n π ∣ c o s x ∣ d x ( 4 ) lim ⁡ x → + ∞ 1 x ∫ 0 x ∣ c o s t ∣ d t ( 5 ) ∫ 0 n π x ∣ s i n x ∣ d x ( 6 ) lim ⁡ x → + ∞ 1 x 2 ∫ 0 x t ∣ s i n t ∣ d t ( 7 ) ∫ 0 n π x ∣ c o s x ∣ d x ( 8 ) lim ⁡ x → + ∞ 1 x 2 ∫ 0 x ∣ c o s t ∣ d t ( 9 ) ∫ 0 n π e − x ∣ s i n x ∣ d x ( 10 ) ∫ 0 + ∞ e − x ∣ s i n x ∣ d x \begin{aligned} & (1)\int_0^{n\pi} |sinx|dx\quad (2)\lim_{x\to +\infty} \frac1{x} \int_0^x |sint|dt \\ & (3)\int_0^{n\pi} |cosx|dx\quad (4)\lim_{x\to +\infty} \frac1{x} \int_0^x |cost|dt \\ & (5)\int_0^{n\pi} x |sinx|dx \quad (6)\lim_{x\to +\infty} \frac1{x^2} \int_0^x t|sint|dt \\ & (7)\int_0^{n\pi} x |cosx|dx\quad (8)\lim_{x\to +\infty} \frac1{x^2} \int_0^x |cost|dt \\ & (9)\int_0^{n\pi}e^{-x}|sinx|dx \quad(10)\int_0^{+\infty}e^{-x}|sinx|dx \end{aligned} (1)0nπsinxdx(2)x+limx10xsintdt(3)0nπcosxdx(4)x+limx10xcostdt(5)0nπxsinxdx(6)x+limx210xtsintdt(7)0nπxcosxdx(8)x+limx210xcostdt(9)0nπexsinxdx(10)0+exsinxdx

  • 以 (5) 和 (7) 为例:
    ∫ 0 n π x ∣ s i n x ∣ d x = x = n π − t ∫ 0 n π ( n π − t ) ∣ s i n ( n π − t ) ∣ d t = ∫ 0 n π n π ∣ s i n x ∣ d x − ∫ 0 n π x ∣ s i n x ∣ d x I = 1 2 n π ∫ 0 n π ∣ s i n x ∣ d x = n 2 π   ∫ 0 n π x ∣ c o s x ∣ d x = x = n π − t ∫ 0 n π ( n π − t ) ∣ c o s ( n π − t ) ∣ d t = ∫ 0 n π n π ∣ c o s x ∣ d x − ∫ 0 n π x ∣ c o s x ∣ d x I = 1 2 n π ∫ 0 n π ∣ c o s x ∣ d x = n 2 π \int_0^{n\pi} x |sinx|dx \xlongequal{x=n\pi-t} \int_{0}^{n\pi}(n\pi-t)|sin(n\pi-t)|dt= \int_{0}^{n\pi} n\pi|sinx|dx -\int_{0}^{n\pi} x|sinx|dx \\ I = \frac12n\pi\int_{0}^{n\pi} |sinx|dx = n^2 \pi \\\,\\ \int_0^{n\pi} x |cosx|dx \xlongequal{x=n\pi-t} \int_{0}^{n\pi} (n\pi-t)|cos(n\pi-t)|dt= \int_{0}^{n\pi} n\pi|cos x|dx -\int_{0}^{n\pi} x|cos x|dx \\ I = \frac12n\pi\int_{0}^{n\pi} |cos x|dx = n^2 \pi 0nπxsinxdxx=nπt 0nπ(nπt)sin(nπt)dt=0nπnπsinxdx0nπxsinxdxI=21nπ0nπsinxdx=n2π0nπxcosxdxx=nπt 0nπ(nπt)cos(nπt)dt=0nπnπcosxdx0nπxcosxdxI=21nπ0nπcosxdx=n2π
  • 以 (9) 为例,结论可进行推广
    ∫ k π ( k + 1 ) π e − x s i n x d x = ( − 1 ) k 2 [ e − ( k + 1 ) π + e − k π ] = ( − 1 ) k 2 e − k π [ e − π + 1 ] ∫ k π ( k + 1 ) π e − 2 x s i n x d x = ( − 1 ) k 5 [ e − 2 ( k + 1 ) π + e − 2 k π ] = ( − 1 ) k 5 e − 2 k π [ e − 2 π + 1 ] \begin{aligned} &\int_{k\pi}^{(k+1)\pi}e^{-x}sinx{\rm d} x = \frac{(-1)^k}2 [e^{-(k+1)\pi}+e^{-k\pi}] = \frac{(-1)^k}2e^{-k\pi} [e^{-\pi}+1] \\ &\int_{k\pi}^{(k+1)\pi}e^{-2x}sinx{\rm d} x = \frac{(-1)^k}5 [e^{-2(k+1)\pi}+e^{-2k\pi}] = \frac{(-1)^k}5 e^{-2k\pi} [e^{-2\pi}+1] \\ \end{aligned} kπ(k+1)πexsinxdx=2(1)k[e(k+1)π+ekπ]=2(1)kekπ[eπ+1]kπ(k+1)πe2xsinxdx=5(1)k[e2(k+1)π+e2kπ]=5(1)ke2kπ[e2π+1]

③广义积分的判敛
  • 比较审敛法
    0 ≤ f ( x ) ≤ g ( x ) { ∫ a + ∞ g ( x ) d x 收 敛 ⇒ ∫ a + ∞ f ( x ) d x 收 敛   ∫ a + ∞ f ( x ) d x 发 散 ⇒ ∫ a + ∞ g ( x ) d x 发 散 0 \leq f(x) \leq g(x) \begin{cases} \int_a^{+\infty} g(x)dx 收敛 \Rightarrow \int_a^{+\infty} f(x) dx收敛 \\ \,\\ \int_a^{+\infty} f(x)dx 发散 \Rightarrow \int_a^{+\infty} g(x) dx发散 \end{cases} 0f(x)g(x)a+g(x)dxa+f(x)dxa+f(x)dxa+g(x)dx
  • 绝对收敛
    ∫ a + ∞ ∣ f ( x ) ∣ d x 收 敛 ⇒ ∫ a + ∞ f ( x ) d x 收 敛 \int_a^{+\infty} |f(x)|dx 收敛 \Rightarrow \int_a^{+\infty} f(x)dx 收敛 a+f(x)dxa+f(x)dx
  • 极限审敛法
    lim ⁡ x → a + ( x − a ) p f ( x ) = A { p < 1 且 0 ≤ A < + ∞ ⇒ ∫ a b f ( x ) d x 收 敛   p ≥ 1 且 0 < A ≤ + ∞ ⇒ ∫ a b f ( x ) d x 发 散   lim ⁡ x → + ∞ x p f ( x ) = A { p ≤ 1 且 0 < A ≤ + ∞ ⇒ ∫ a + ∞ f ( x ) d x 发 散   p > 1 且 0 ≤ A < + ∞ ⇒ ∫ a + ∞ f ( x ) d x 收 敛 \lim_{x\to a^+} (x-a)^pf(x)= A \begin{cases} p < 1且0 \le A < +\infty \Rightarrow \int_a^{b} f(x)dx 收敛 \\\,\\ p \ge 1且0 < A \le +\infty \Rightarrow \int_a^{b} f(x)dx 发散 \end{cases} \\\,\\ \lim_{x\to +\infty} x^p f(x) = A \begin{cases} p \le 1且0 < A \le +\infty \Rightarrow \int_a^{+\infty} f(x)dx 发散 \\\,\\ p > 1且0 \le A < +\infty \Rightarrow\int_a^{+\infty} f(x)dx 收敛 \end{cases} xa+lim(xa)pf(x)=Ap<10A<+abf(x)dxp10<A+abf(x)dxx+limxpf(x)=Ap10<A+a+f(x)dxp>10A<+a+f(x)dx
  • 在区间 ( a , b ] (a, b] (a,b] [ a , b ) [a, b) [a,b)上的积分
    ∫ a b d x ( x − a ) p = { 收 敛 , p < 1 发 散 , p ≥ 1 ∫ a b d x ( b − x ) p = { 收 敛 , p < 1 发 散 , p ≥ 1 \int_a^b \frac{dx}{(x-a)^p} = \begin{cases} 收敛,p < 1 \\ 发散,p \geq 1 \end{cases} \quad \int_a^b \frac{dx}{(b-x)^p} = \begin{cases} 收敛,p < 1 \\ 发散,p \geq 1 \end{cases} ab(xa)pdx={p<1p1ab(bx)pdx={p<1p1
  • 在区间 [ a , + ∞ ) [a, +\infty) [a,+) ( − ∞ , b ] (-\infty, b] (,b]上的积分
    ∫ a + ∞ d x x p = { 发 散 , p ≤ 1 收 敛 , p > 1 ∫ − ∞ b d x x p = { 发 散 , p ≤ 1 收 敛 , p > 1 \int_a^{+\infty} \frac{dx}{x^p} = \begin{cases} 发散,p \leq 1 \\ 收敛,p > 1 \end{cases} \quad \int_{-\infty}^b \frac{dx}{x^p} = \begin{cases} 发散,p \leq 1 \\ 收敛,p > 1 \end{cases} a+xpdx={p1p>1bxpdx={p1p>1
  • 在区间 [ 2 , + ∞ ) [2, +\infty) [2,+) 上的积分
    ∫ 2 + ∞ d x x l n p x = { 发 散 , p ≤ 1 收 敛 , p > 1 \int_2^{+\infty} \frac{dx}{xln^px} = \begin{cases} 发散,p \leq 1 \\ 收敛,p > 1 \end{cases} 2+xlnpxdx={p1p>1
  • 例题
    ∫ 0 + ∞ d x x a ( 1 + x ) b 收 敛 ⇒ a < 1 , a + b > 1   ∫ 0 π 2 d x c o s a x s i n b x 收 敛 ⇒ a < 1 , b < 1   ∫ 1 + ∞ d x x a l n b x 收 敛 ⇒ a > 1 , b < 1 \int_0^{+\infty}\frac{dx}{x^a(1+x)^b} 收敛 \Rightarrow a<1,a+b > 1\\\,\\ \int_0^{\frac{\pi}2}\frac{dx}{cos^axsin^bx} 收敛 \Rightarrow a<1,b<1 \\\,\\ \int_1^{+\infty}\frac{dx}{x^aln^bx} 收敛 \Rightarrow a>1, b<1 0+xa(1+x)bdxa<1,a+b>102πcosaxsinbxdxa<1,b<11+xalnbxdxa>1,b<1
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值