概率论与数理统计

第1章 随机事件与概率

  • 基本公式
    P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P ( A − B ) = P ( A ) − P ( A B ) P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) \begin{aligned} &P(A∪B) =P(A)+P(B)-P(AB) \\ &P(A∪B∪C) = P(A)+P(B)+P(C) - P(AB)- P(AC)- P(BC)+P(ABC)\\ &P(A-B) = P(A)-P(AB)\\ &P(AB) = P(A)\cdot P(B|A) \end{aligned} P(AB)=P(A)+P(B)P(AB)P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)P(AB)=P(A)P(AB)P(AB)=P(A)P(BA)
  • 相互独立和两两独立
    A , B , C 相 互 独 立 ⇒ { P ( A B ) = P ( A ) ⋅ P ( B ) P ( A C ) = P ( A ) ⋅ P ( C ) P ( B C ) = P ( B ) ⋅ P ( C ) P ( A B C ) = P ( A ) ⋅ P ( B ) ⋅ P ( C )   A , B , C 两 两 独 立 ⇒ { P ( A B ) = P ( A ) ⋅ P ( B ) P ( A C ) = P ( A ) ⋅ P ( C ) P ( B C ) = P ( B ) ⋅ P ( C )   P ( A B C ) ≤ P ( A ) ≤ P ( A ∪ B ∪ C ) A,B,C 相互独立 \Rightarrow \begin{cases} P(AB) = P(A) \cdot P(B)\\ P(AC) = P(A) \cdot P(C)\\ P(BC) = P(B) \cdot P(C)\\ P(ABC) = P(A) \cdot P(B) \cdot P(C) \end{cases} \\\,\\ A, B,C 两两独立 \Rightarrow \begin{cases} P(AB) = P(A) \cdot P(B)\\ P(AC) = P(A) \cdot P(C)\\ P(BC) = P(B) \cdot P(C)\\ \end{cases} \\\,\\ P(ABC) \le P(A) \le P(A∪B∪C) A,B,CP(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)P(ABC)=P(A)P(B)P(C)A,B,CP(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)P(ABC)P(A)P(ABC)

第2章 一维随机变量分布

1.一维随机变量的分布函数

  • 分布函数的性质
    F ( − ∞ ) = 0 , F ( + ∞ ) = 1 ; 单 调 非 减 ; 右 连 续 P { X ≤ x } = F ( x ) P { X = x } = F ( x ) − F ( x − 0 ) P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) P { x 1 ≤ X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) + P { X = x 1 } \begin{aligned} &F(-\infty) = 0,F(+\infty) = 1;单调非减;右连续 \\ &P\{X \le x\} = F(x) \\ &P\{ X = x \} = F(x)-F(x-0) \\ &P\{x_1 < X \le x_2 \} = F(x_2)-F(x_1)\\ &P\{x_1 \le X \le x_2 \} = F(x_2)-F(x_1) + P\{ X = x_1 \}\\ \end{aligned} F()=0,F(+)=1P{Xx}=F(x)P{X=x}=F(x)F(x0)P{x1<Xx2}=F(x2)F(x1)P{x1Xx2}=F(x2)F(x1)+P{X=x1}
  • 离散型分布函数的性质
    F ( x ) 呈 阶 梯 状 , ∃   x 使 得 P { X = x } > 0 F(x)呈阶梯状,\exists\, x 使得 P\{X=x\} > 0 F(x)x使P{X=x}>0
  • 连续型分布函数的性质
    F ( x ) 处 处 连 续 , ∀   x 都 有 P { X = x } = 0 F(x)处处连续,\forall\, x 都有P\{X=x\} = 0 F(x)xP{X=x}=0

2.常见一维分布

  • 超几何分布 X ∼ H ( N , M , n ) E ( X ) = n M N X\sim H(N,M,n) \quad E(X) = n\frac{M}{N} XH(N,M,n)E(X)=nNM
    P { X = k } = C M k ⋅ C N − M n − k C N n P\{X = k\} = \frac{C_M^k\cdot C_{N-M}^{n-k}}{C_{N}^n} P{X=k}=CNnCMkCNMnk
  • 二项分布 X ∼ B ( n , p ) E ( X ) = n p , D ( X ) = n p ( 1 − p ) X \sim B(n,p) \quad E(X) = np,D(X) = np(1-p) XB(n,p)E(X)=npD(X)=np(1p)
    P { X = k } = C n k p k ( 1 − p ) n − k P\{X = k\} = C_n^kp^k(1-p)^{n-k} P{X=k}=Cnkpk(1p)nk
  • 泊松分布 X ∼ P ( λ ) E ( X ) = λ , D ( X ) = λ X \sim P(\lambda) \quad E(X) = \lambda,D(X) = \lambda XP(λ)E(X)=λD(X)=λ
    P { X = k } = lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = λ k e − λ k ! P\{X = k\} = \lim_{n\to\infty}C_n^kp^k(1-p)^{n-k} = \frac{\lambda^ke^{-\lambda}}{k!} P{X=k}=nlimCnkpk(1p)nk=k!λkeλ
  • 指数分布 X ∼ E ( λ ) E ( X ) = 1 λ , D ( X ) = 1 λ 2 X \sim E(\lambda)\quad E(X) = \frac{1}{\lambda},D(X)= \frac1{\lambda^2} XE(λ)E(X)=λ1D(X)=λ21
    f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, \quad x \le 0 \end{cases} \quad F(x) = \begin{cases} 1- e^{-\lambda x}, x > 0 \\ 0, \quad x \le 0 \end{cases} f(x)={λeλx,x>00,x0F(x)={1eλx,x>00,x0
  • 均匀分布 X ∼ U ( a , b ) E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 X \sim U(a,b) \quad E(X) = \frac{a+b}{2},D(X)= \frac{(b-a)^2}{12} XU(a,b)E(X)=2a+bD(X)=12(ba)2
    f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x) = \begin{cases} \frac{1}{b-a},\quad a<x<b \\ 0, \quad\quad 其他 \end{cases} f(x)={ba1,a<x<b0,
  • 正态分布 X ∼ N ( μ , σ 2 ) E ( X ) = μ , D ( X ) = σ 2 X \sim N(\mu,\sigma^2) \quad E(X) = \mu,D(X)= \sigma^2 XN(μ,σ2)E(X)=μD(X)=σ2
    F ( x ) = Φ ( x − μ σ ) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ϕ ( x ) = 1 2 π e − x 2 2 F(x)=\Phi(\frac{x-\mu}{\sigma}) \quad f(x)= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}2} F(x)=Φ(σxμ)f(x)=2π σ1e2σ2(xμ)2ϕ(x)=2π 1e2x2

第3章 多维随机变量分布

1.二维随机变量的分布函数

F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) F(x,y) = P\{X\le x, Y \le y\} = \int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv \\ \frac{\partial^2 F(x,y)}{\partial x\partial y} = f(x,y) F(x,y)=P{Xx,Yy}=xduyf(u,v)dvxy2F(x,y)=f(x,y)


2.边缘分布、条件分布

  • 边缘分布
    F X ( x ) = ∫ − ∞ x d x ∫ − ∞ + ∞ f ( x , y ) d y f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y   F Y ( x ) = ∫ − ∞ y d y ∫ − ∞ + ∞ f ( x , y ) d x f Y ( x ) = ∫ − ∞ + ∞ f ( x , y ) d x F_X(x) = \int_{-\infty}^{x}{\rm d}x \int_{-\infty}^{+\infty}f(x,y){\rm d}y \quad f_X(x) = \int_{-\infty}^{+\infty}f(x,y){\rm d}y \\\,\\ F_Y(x) = \int_{-\infty}^{y}{\rm d}y \int_{-\infty}^{+\infty}f(x,y){\rm d}x \quad f_Y(x) = \int_{-\infty}^{+\infty}f(x,y){\rm d}x FX(x)=xdx+f(x,y)dyfX(x)=+f(x,y)dyFY(x)=ydy+f(x,y)dxfY(x)=+f(x,y)dx
  • 条件分布
    F X ∣ Y ( x   ∣   y ) = P { X ≤ x   ∣   Y = y } = ∫ − ∞ x f ( t , y ) f Y ( y ) d t f X ∣ Y ( x   ∣   y ) = f ( x , y ) f Y ( y )   F Y ∣ X ( y   ∣   x ) = P { Y ≤ x   ∣   X = x } = ∫ − ∞ y f ( x , t ) f X ( y ) d t f Y ∣ X ( y   ∣   x ) = f ( x , y ) f X ( y ) F_{X|Y}(x\,|\,y) = P\{X\le x \,|\,Y = y\} = \int_{-\infty}^{x}\frac{f(t,y)}{f_Y(y)}{\rm d}t \quad f_{X|Y}(x\,|\,y) = \frac{f(x,y)}{f_Y(y)} \\\,\\ F_{Y|X}(y\,|\,x) = P\{Y\le x \,|\,X = x\} = \int_{-\infty}^{y}\frac{f(x,t)}{f_X(y)}{\rm d}t \quad f_{Y|X}(y\,|\,x) = \frac{f(x,y)}{f_X(y)} FXY(xy)=P{XxY=y}=xfY(y)f(t,y)dtfXY(xy)=fY(y)f(x,y)FYX(yx)=P{YxX=x}=yfX(y)f(x,t)dtfYX(yx)=fX(y)f(x,y)
    已知 f X ( x ) , f Y ∣ X ( y ∣ x ) , 求 f ( x , y ) f_X(x),f_{Y|X}(y | x), 求 f(x,y) fX(x)fYX(yx),f(x,y)
  • f X ( x ) > 0 f_X(x) > 0 fX(x)>0 时, 使用 f Y ∣ X ( y   ∣   x ) = f ( x , y ) f X ( x ) f_{Y|X}(y\,|\, x) = \frac{f(x,y)}{f_X(x)} fYX(yx)=fX(x)f(x,y), 计算 f ( x , y ) f(x,y) f(x,y)在该条件下的积分
  • 然后讨论 f X ( x ) = 0 f_X(x) = 0 fX(x)=0的情况

3.二维正态分布

( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 ; ρ ) (X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2; \rho) (X,Y)N(μ1,μ2,σ12,σ22;ρ)

  • X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X \sim N(\mu_1,\sigma_1^2), Y \sim N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22)
  • ρ = 0 ⇔ X , Y \rho = 0 \Leftrightarrow X,Y ρ=0XY 相互独立

4.多元随机变量函数的分布

  • 连续型卷积公式:设 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量,概率密度为 f ( x , y ) f(x,y) f(x,y)
    Z = X + Y : f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x = ∫ − ∞ + ∞ f ( z − y , y ) d y Z = a X + b Y : f Z ( z ) = 1 ∣ b ∣ ∫ − ∞ + ∞ f ( x , z − a x b ) d x = 1 ∣ a ∣ ∫ − ∞ + ∞ f ( z − b y a , y ) d y Z = X Y : f Z ( z ) = ∫ − ∞ + ∞ 1 ∣ x ∣ f ( x , z x ) d x Z = Y X : f Z ( z ) = ∫ − ∞ + ∞ ∣ x ∣ ⋅ f ( x , x z ) d x \begin{aligned} &Z=X+Y:f_Z(z) = \int_{-\infty}^{+\infty}f(x,z-x){\rm d}x = \int_{-\infty}^{+\infty}f(z-y,y){\rm d}y \\ &Z=aX+bY:f_Z(z) = \frac1{|b|}\int_{-\infty}^{+\infty}f(x,\frac{z-ax}b){\rm d}x = \frac1{|a|}\int_{-\infty}^{+\infty}f(\frac{z-by}a,y){\rm d}y \\ &Z=XY:f_Z(z) = \int_{-\infty}^{+\infty}\frac{1}{|x|}f(x,\frac zx){\rm d}x \\ &Z = \frac YX:f_Z(z) = \int_{-\infty}^{+\infty}|x|\cdot f(x,xz){\rm d}x \end{aligned} Z=X+YfZ(z)=+f(x,zx)dx=+f(zy,y)dyZ=aX+bYfZ(z)=b1+f(x,bzax)dx=a1+f(azby,y)dyZ=XYfZ(z)=+x1f(x,xz)dxZ=XYfZ(z)=+xf(x,xz)dx
  • X, Y 相互独立, Z = m a x ( X , Y ) Z=max(X,Y) Z=max(X,Y)
    F Z ( z ) = P { m a x ( X , Y ) ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } ⋅ P { Y ≤ z } = F X ( z ) ⋅ F Y ( z ) \begin{aligned} F_{Z}(z) &= P\{max(X,Y) \leq z \} \\ & = P\{X \leq z, Y \leq z \} \\ & = P\{X \leq z\} \cdot P\{Y \leq z \} \\ & = F_X(z) \cdot F_Y(z) \end{aligned} FZ(z)=P{max(X,Y)z}=P{Xz,Yz}=P{Xz}P{Yz}=FX(z)FY(z)
  • X, Y 相互独立, Z = m i n ( X , Y ) Z=min(X,Y) Z=min(X,Y)
    F Z ( z ) = P { m i n ( X , Y ) ≤ z } = 1 − P { m i n ( X , Y ) > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } ⋅ P { Y > z } = 1 − [ 1 − F X ( z ) ] ⋅ [ 1 − F Y ( z ) ] \begin{aligned} F_{Z}(z) &= P\{min(X,Y) \leq z \} \\ & = 1 - P\{min(X,Y) > z \} \\ & = 1 - P\{X > z, Y > z \} \\ & = 1 - P\{X > z\} \cdot P\{Y > z \} \\ & = 1- [1-F_X(z)] \cdot [1- F_Y(z)] \end{aligned} FZ(z)=P{min(X,Y)z}=1P{min(X,Y)>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1[1FX(z)][1FY(z)]
  • 独立分布的线性组合
    X i ∼ P ( λ i ) ⇒ ∑ i = 1 n X i ∼ P ( ∑ i = 1 n λ i ) X i ∼ B ( n i , p ) ⇒ ∑ i = 1 n X i ∼ B ( ∑ i = 1 n n i , p ) X i ∼ N ( μ i , σ i 2 ) ⇒ ∑ i = 1 n a i X i ∼ N ( ∑ i = 1 n a i μ i , ∑ i = 1 n a i 2 σ i 2 ) X i ∼ E ( λ i ) ⇒ m i n { X 1 , X 2 , . . , X n } ∼ E ( ∑ i = 1 n λ i ) \begin{aligned} &X_i \sim P(\lambda_i) \Rightarrow \sum_{i=1}^nX_i \sim P(\sum_{i=1}^n\lambda_i) \\ &X_i \sim B(n_i,p) \Rightarrow \sum_{i=1}^nX_i \sim B(\sum_{i=1}^n n_i, p) \\ &X_i \sim N(\mu_i,\sigma^2_i) \Rightarrow \sum_{i=1}^n a_iX_i \sim N(\sum_{i=1}^n a_i\mu_i, \sum_{i=1}^n a_i^2\sigma^2_i) \\ &X_i \sim E(\lambda_i) \Rightarrow min\{X_1, X_2, .., X_n\} \sim E(\sum_{i=1}^n\lambda_i) \end{aligned} XiP(λi)i=1nXiP(i=1nλi)XiB(ni,p)i=1nXiB(i=1nni,p)XiN(μi,σi2)i=1naiXiN(i=1naiμi,i=1nai2σi2)XiE(λi)min{X1,X2,..,Xn}E(i=1nλi)

第4章 随机变量的数字特征

1.常用积分

∫ 0 + ∞ e − x 2 d x = π 2 ∫ 0 + ∞ x 2 e − x 2 d x = π 4 ∫ 0 + ∞ x n e − x d x = n ! \int_{0}^{+\infty}e^{-x^2}dx = \frac{\sqrt{\pi}}2 \quad \int_{0}^{+\infty}x^2 e^{-x^2}dx = \frac{\sqrt{\pi}}4 \quad \int_0^{+\infty}x^ne^{-x}dx = n! 0+ex2dx=2π 0+x2ex2dx=4π 0+xnexdx=n!

2.数学期望

  • 随机变量 X X X 的概率密度为 f ( x ) f(x) f(x),则期望为:
    E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X) = \int_{-\infty}^{+\infty} xf(x)dx E(X)=+xf(x)dx
  • 随机变量 Y = g ( X ) Y = g(X) Y=g(X) 的概率密度为 f ( x ) f(x) f(x),则期望为:
    E ( Y ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx E(Y)=+g(x)f(x)dx
  • 随机变量 Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y) 的概率密度为 f ( x , y ) f(x,y) f(x,y),则期望为:
    E ( Z ) = ∫ − ∞ + ∞ d x ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d y E(Z) = \int_{-\infty}^{+\infty}dx\int_{-\infty}^{+\infty} g(x,y)f(x,y)dy E(Z)=+dx+g(x,y)f(x,y)dy
  • 数学期望的性质
    E ( a X + b ) = a E ( X ) + b E ( X ± Y ) = E ( X ) ± E ( Y ) \begin{aligned} &E(aX+b) = aE(X) + b \\ &E(X \pm Y) = E(X) \pm E(Y) \end{aligned} E(aX+b)=aE(X)+bE(X±Y)=E(X)±E(Y)

3.方差

  • 定义 D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E(X^2) - E^2(X) D(X)=E(X2)E2(X)
  • 方差的性质
    D ( a X + b ) = a 2 D ( X ) D ( X ± Y ) = D ( X ) + D ( Y ) ± C o v ( X , Y ) \begin{aligned} &D(aX+b) = a^2D(X) \\ &D(X\pm Y) = D(X) + D(Y) \pm Cov(X,Y) \\ \end{aligned} D(aX+b)=a2D(X)D(X±Y)=D(X)+D(Y)±Cov(X,Y)

4.协方差、相关系数

C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) C o v ( X , Y ) = C o v ( Y , X ) C o v ( a X , b Y ) = a b ⋅ C o v ( X , Y ) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) X , Y 相 互 独 立 ⇒ { X , Y 不 相 关 ρ X Y = 0 C o v ( X , Y ) = 0 , 反 之 不 成 立 \begin{aligned} &Cov(X,Y) = E(XY)-E(X)E(Y) \\ &\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E(XY)-E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} \\ &Cov(X,Y) = Cov(Y,X) \\ &Cov(aX,bY) = ab \cdot Cov(X,Y) \\ &Cov(X_1 + X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y) \\ &X,Y相互独立 \Rightarrow \begin{cases} X,Y不相关 \\ \rho_{XY} = 0 \\ Cov(X,Y) = 0 \\ \end{cases}, 反之不成立 \end{aligned} Cov(X,Y)=E(XY)E(X)E(Y)ρXY=D(X) D(Y) Cov(X,Y)=D(X) D(Y) E(XY)E(X)E(Y)Cov(X,Y)=Cov(Y,X)Cov(aX,bY)=abCov(X,Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)X,YX,YρXY=0Cov(X,Y)=0,


第5章 大数定律与中心极限定理

1.大数定律


2.中心极限定理


第6章 数理统计

1.样本数字特征

X ∼ N ( μ , σ 2 ) , X 1 , X 2 , . . . , X n X \sim N(\mu, \sigma^2),X_1, X_2,..., X_n XN(μ,σ2)X1,X2,...,Xn 是来自总体的样本,则有 X ‾ \overline X X S 2 S^2 S2 相互独立
X ‾ = 1 n ∑ i = 1 n X i S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 E ( X ‾ ) = μ D ( X ‾ ) = σ 2 n E ( S 2 ) = σ 2 D ( S 2 ) = D [ σ 2 ( n − 1 ) χ 2 ( n − 1 ) ] = 2 σ 4 ( n − 1 ) D ( X i − X ‾ ) = n − 1 n σ 2 \overline X = \frac1n \sum_{i=1}^n X_i \quad S^2 = \frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2 \\ \begin{aligned} &E(\overline X) = \mu \\ &D(\overline X) = \frac{\sigma^2}{n}\\ &E(S^2) = \sigma^2 \\ &D(S^2) = D[\frac{\sigma^2}{(n-1)} \chi^2(n-1)] = \frac{2\sigma^4}{(n-1)} \\ &D(X_i-\overline X) = \frac{n-1}{n}\sigma^2\\ \end{aligned} X=n1i=1nXiS2=n11i=1n(XiX)2E(X)=μD(X)=nσ2E(S2)=σ2D(S2)=D[(n1)σ2χ2(n1)]=(n1)2σ4D(XiX)=nn1σ2


2.抽样分布

  • χ 2 \chi^2 χ2 分布:设 X i ∼ N ( 0 , 1 ) X_i \sim N(0, 1) XiN(0,1)
    χ 2 = X 1 2 + X 2 2 + . . + X n 2 ∼ χ 2 ( n )   E ( χ 2 ) = n D ( χ 2 ) = 2 n \chi^2 = X_1^2 + X_2^2 + .. + X_n^2 \sim \chi^2(n) \\\,\\ E(\chi^2) = n \quad D(\chi^2) = 2n χ2=X12+X22+..+Xn2χ2(n)E(χ2)=nD(χ2)=2n
  • t t t 分布:设 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0,1),Y \sim \chi^2(n) XN(0,1)Yχ2(n), 且 X 和 Y 相互独立
    T = X Y / n ∼ t ( n ) t α ( n ) = − t 1 − α ( n ) E ( T ) = 0 D ( T ) = n n − 2 T = \frac{X}{\sqrt{Y/n}} \sim t(n) \quad t_{\alpha}(n) = -t_{1-\alpha}(n) \\ E(T)=0\quad D(T)=\frac {n}{n-2} T=Y/n Xt(n)tα(n)=t1α(n)E(T)=0D(T)=n2n
  • F F F 分布:设 X ∼ χ 1 2 ( n 1 ) , Y ∼ χ 2 2 ( n 2 ) X \sim \chi_1^2(n1),Y \sim \chi_2^2(n2) Xχ12(n1)Yχ22(n2),且 X 和 Y 相互独立
    F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 )   T ∼ t ( n ) ⇒ T 2 ∼ F ( 1 , n ) F = \frac{X/n_1}{Y/n_2} \sim F(n_1,n_2) \quad F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)} \\\,\\ T \sim t(n) \Rightarrow T^2 \sim F(1,n) F=Y/n2X/n1F(n1,n2)F1α(n1,n2)=Fα(n2,n1)1Tt(n)T2F(1,n)
  • 正态总体的抽样分布
    X ‾ − μ σ n ∼ N ( 0 , 1 ) X ‾ − μ S n ∼ t ( n − 1 ) 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \begin{aligned} & \frac{\overline X - \mu}{\frac{\sigma}{\sqrt {n}}} \sim N(0,1) \quad \frac{\overline X - \mu}{\frac{S}{\sqrt {n}}} \sim t(n-1) \\ & \frac{1}{\sigma^2} \sum_{i=1}^n(X_i - \overline X)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \\ & \frac{1}{\sigma^2} \sum_{i=1}^n(X_i - \mu)^2 \sim \chi^2(n) \\ \end{aligned} n σXμN(0,1)n SXμt(n1)σ21i=1n(XiX)2=σ2(n1)S2χ2(n1)σ21i=1n(Xiμ)2χ2(n)

第7章 参数估计

1.无偏估计

  • 定义:如果 E ( θ ^ ) = θ E(\hat \theta) = \theta E(θ^)=θ,则 θ ^ \hat\theta θ^ θ \theta θ 的无偏估计
  • 举例 X ‾ \overline X X μ \mu μ 的无偏估计, S 2 S^2 S2 σ 2 \sigma^2 σ2 的无偏估计

2.矩估计

  • 定义:设总体 X 含有未知参数 θ 1 , θ 2 , . . . , θ k \theta_1,\theta_2,...,\theta_k θ1,θ2,...,θk,解方程组
    E ( X l ) = 1 n ∑ i = 1 n X i l   ,   l = 1 , 2 , . . . , k E(X^l) = \frac1n \sum_{i=1}^n X_i^l \space , \space l = 1,2,...,k E(Xl)=n1i=1nXil , l=1,2,...,k
  • 举例:设 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2),求 μ , σ 2 \mu, \sigma^2 μ,σ2 的矩估计

3.极大似然估计

  • 定义
    L ( θ ) = ∏ i = 1 n f ( x i ; θ ) { d l n L ( θ ) d θ = 0 有 解 ⇒ 解 出 θ 即 可   d l n L ( θ ) d θ = 0 无 解 ⇒ 寻 找 θ 使 得 L ( θ ) 最 大 L(\theta) = \prod_{i=1}^n f(x_i; \theta) \begin{cases} \frac{dlnL(\theta)}{d\theta} = 0 有解 \Rightarrow 解出\theta即可 \\\,\\ \frac{dlnL(\theta)}{d\theta} = 0 无解 \Rightarrow 寻找\theta使得L(\theta)最大 \\ \end{cases} L(θ)=i=1nf(xi;θ)dθdlnL(θ)=0θdθdlnL(θ)=0θ使L(θ)
  • 举例:设 X ∼ U [ a , b ] X \sim U[a,b] XU[a,b],求 a 和 b 的极大似然估计
    a ^ = m i n { X 1 , X 2 , . . . , X n } b ^ = m a x { X 1 , X 2 , . . . , X n } \hat{a} = min\{X_1,X_2,...,X_n \} \quad \hat{b} = max\{X_1,X_2,...,X_n \} a^=min{X1,X2,...,Xn}b^=max{X1,X2,...,Xn}

4.置信区间估计

  • 置信水平为 1 − α 1-\alpha 1α
    σ 2 已 知 , 估 计 μ : ( X ‾ − σ n z α 2 , X ‾ + σ n z α 2 )   σ 2 未 知 , 估 计 μ : ( X ‾ − S n t α 2 , X ‾ + S n t α 2 ) \sigma^2 已知,估计\mu: (\overline X - \frac{\sigma}{\sqrt n}z_{\frac{\alpha}{2}}, \overline X +\frac{\sigma}{\sqrt n} z_{\frac{\alpha}{2}} ) \\ \space \\ \sigma^2 未知,估计\mu: (\overline X -\frac{S}{\sqrt n} t_{\frac{\alpha}{2}} , \overline X + \frac{S}{\sqrt n}t_{\frac{\alpha}{2}} ) \\ σ2μ:(Xn σz2α,X+n σz2α) σ2μ:(Xn St2α,X+n St2α)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值