题目链接:https://codeforces.com/problemset/problem/1172/A
题目大意:给出手牌A,牌库B(1到n和n个0)。每次顺时针旋转(牌库中的第一个牌放入手牌,手牌中随便一个牌放入牌库末尾)。问多少次操作后,可以让所有牌库中的所有牌单调增。求最少次数。
思路:首先很明显有一种情况就是将所有牌库中的牌都放入手牌,然后再都依次放入牌库。需要次数为Pos[牌库中最后一个有效数]+n;但是这很明显不一定是最少的。所以我们看能否少旋转几次。
首先手牌中的牌放到对应位置需要的次数为 Cnt=n-i+1。
牌库中的牌放到对应位置需要的次数分为两种情况:
1:Pos[i]<i,即该张牌必须先移回手牌再放入对应的位置。Cnt=Pos[i]+n-i+1。
2:Pos[i]>=i,即该张牌直接向前移动几位即可。Cnt=Pos[i]-i。
好了,我们已经得到了所有牌的最小移动次数了。取一个最大值res。这个res表示最少需要移动多少次。
再次遍历所有的数字。如果该数字在手牌中,不用管。如果在牌库中&&需要回到手牌中,就相当于在手牌中,也不用管。
最后一种情况,即Pos[i]>=i,如果res>Cnt[i]。则说明该牌需要回到手牌。所以更新Cnt[i]=Pos[i]+n-i+1。
直到不存在更新即可。最多更新2轮。
ACCode:
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
// srand((unsigned)time(NULL));rand();
#include<map>//unordered_map
#include<set>//multiset
#include<deque>
#include<queue>
#include<stack>
#include<bitset>
#include<string>
#include<fstream>
#include<iostream>
#include<algorithm>
#define ll long long
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define clean(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXN=2e5+10;
//const int MAXM=10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll MOD=1e9+7;
const double PI=acos(-1.0);
const double EPS=1.0e-8;
//unsigned register
// ios::sync_with_stdio(false)
int A[MAXN],B[MAXN];
int Pos[MAXN],Cnt[MAXN];
int n;
int main(){
while(~scanf("%d",&n)){
for(int i=1;i<=n;++i) Pos[i]=0;
for(int i=1;i<=n;++i) scanf("%d",&A[i]);
for(int i=1;i<=n;++i){
scanf("%d",&B[i]);
if(B[i]>0) Pos[B[i]]=i;
}
int ans=0;
for(int i=1;i<=n;++i){
if(Pos[i]<i) Cnt[i]=Pos[i]+n-i+1;//先回到手牌再放回牌库
else Cnt[i]=Pos[i]-i;//直接在牌库中排序
}
for(int i=1;i<=n;++i) ans=max(ans,Cnt[i]);//找到最大的操作次数
// for(int i=1;i<=n;++i) printf("%d ",Cnt[i]);printf("\n");
// printf("%d\n",ans);
int flag=1;
while(flag){
flag=0;
for(int i=1;i<=n;++i){
if(Pos[i]==0) continue ;
if(ans>Cnt[i]) Cnt[i]=Pos[i]+n-i+1;//要进行多次操作,必定会回到手牌
if(ans<Cnt[i]){
ans=Cnt[i];flag=1;
}
}
}
// for(int i=1;i<=n;++i) printf("%d ",Cnt[i]);printf("\n");
printf("%d\n",ans);
}
}