Good Numbers (规律)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4722

Good Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5577    Accepted Submission(s): 1769


Problem Description
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number is a good number.
You are required to count the number of good numbers in the range from A to B, inclusive.
 

Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 10 18).
 

Output
For test case X, output "Case #X: " first, then output the number of good numbers in a single line.
 

Sample Input
 
 
2 1 10 1 20
 

Sample Output
 
 
Case #1: 0 Case #2: 1
Hint
The answer maybe very large, we recommend you to use long long instead of int.

题目大意:两个数a,b从a到b,找出其中所有每位数字相加之和可以被10整除的数字的个数。

因为数据范围很大,所以肯定不能遍历,因此必定会有规律:

分析:

由题得知:个位数是必定不可能的;

十位数有9个;

剩下的:每一位必定有其他的位能凑成10的倍数例如:100后的可1-9以及对应的(9-1)-(9-9),查看可以组合的数字;

因此可以得出是每10个数会出现一个符合要求的数字

因此前n个数必定有n/10个数是符合要求的数,然而这只判断了n忽略了个位数,因此加上个位数还有:一个n-n%10-n之间的判断,符合要求++;

ac:

#include<stdio.h>
#include<string.h>
#include<math.h>

//#include<map>
#include<set>
#include<deque>
#include<queue>
#include<stack>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;

#define ll long long
#define da    0x3f3f3f3f
#define xiao -0x3f3f3f3f
#define clean(a,b) memset(a,b,sizeof(a))// 雷打不动的头文件

ll judge(ll x)
{
	int sum=0;
	while(x)
	{
		sum=sum+x%10;
		x=x/10;
	}
	return sum;
}

ll f(ll x)
{
	ll sum=0;
	sum=sum+x/10;
	for(ll i=(x-x%10);i<=x;++i)
	{
		if(judge(i)%10==0)
		{
			sum++;
			break;
		}
	}
	return sum;
}

int main()
{
	int t,top=1;
	cin>>t;
	while(t--)
	{
		ll a,b;
		cin>>a>>b;
		cout<<"Case #"<<top++<<": "<<f(b)-f(a-1)<<endl;//注意a也是要判断的数 
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值