计数排序
计数排序不是一个比较排序算法,该算法于1954年由 Harold H. Seward提出,通过计数将时间复杂度降到了O(N)。
找出原数组中元素值最大的,记为max。创建一个新数组count,其长度是max加1,其元素默认值都为0。遍历原数组中的元素,以原数组中的元素作为count数组的索引,以原数组中的元素出现次数作为count数组的元素值。最后将count数组的索引值按个数append到result数组中,即可得到有序数组。
计数排序代码实现:
def count_sort(li, max_count=100):
count = [0 for _ in range(max_count+1)] # 生成长度为max_count+1的全0的数组
for val in li:
count[val] += 1
li.clear()
for ind, val in enumerate(count): # count数组中有val个ind值
for i in range(val): # 将val个ind值添加到result数组中,这里直接覆盖原数组,节省空间
li.append(ind)
for val in li
时间复杂度为O(n),后面虽然嵌套了两层循环,但是append的元素总个数为原数组的长度n,故时间复杂度也为O(n),总体时间复杂度为O(n)。虽然计数排序比之前学过的排序都要快,但它也有自己的缺点,我们得知道数组中最大的元素,如果只有5个数,但最大的元素为1000,我们得用长度为1001的列表来记录各元素出现的次数,占用大量内存。
桶排序
在将元素放入对应的桶中时,可以同时使用插入排序使得每个桶内的元素有序,最后按顺序输出各个桶中的值即可完成排序。
代码实现:
import random
def bucket_sort(li, n=100, max_num=10000):
buckets = [[] for _ in range(n)] # 创建桶
for var in li:
i = min(var // (max_num // n), n-1) # i 表示var放到几号桶里
buckets[i].append(var) # 把var加到桶里边
# 保持桶内的顺序
for j in range(len(buckets[i])-1, 0, -1):
if buckets[i][j] < buckets[i][j-1]:
buckets[i][j], buckets[i][j-1] = buckets[i][j-1], buckets[i][j]
else:
break
sorted_li = []
for buc in buckets:
sorted_li.extend(buc)
return sorted_li
li = [random.randint(0,10000) for i in range(100000)]
# print(li)
li = bucket_sort(li)
print(li)
k为每个桶的平均长度,桶排序不常用,了解即可。
基数排序
对于两位数的排序,我们可以把个位和十位分开,看成多关键字排序。先用桶排序把个位排成有序的,再将十位排成有序即可完成基数排序。
代码实现:
def radix_sort(li):
max_num = max(li) # 最大值 9->1, 99->2, 888->3, 10000->5
it = 0
while 10 ** it <= max_num:
buckets = [[] for _ in range(10)]
for var in li:
# 987 it=1 987//10->98 98%10->8; it=2 987//100->9 9%10=9
digit = (var // 10 ** it) % 10
buckets[digit].append(var)
# 分桶完成
li.clear()
for buc in buckets:
li.extend(buc)
# 把数重新写回li
it += 1