欧拉定理的性质(线性筛)

  欧拉定理是用来阐述素数模下,指数同余的性质。

     欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)

     例φ(9)=7,因为与9互质且小于等于9的正整数有7个(1,2,4,5,6,7,8)

    欧拉定理还有几个引理:

    1.如果n为某一个素数p,则φ(p)=p-1;

    2.如果n为某一个素数p的幂次,那么φ(p^a)=(p-1)*p^(a-1);

    3.如果n为任意两个数a和b的积,那么φ(a*b)=φ(a)*φ(b)

    4.设n=(p1^a1)*(p2^a2)*……*(pk^ak) (为N的分解式)

    欧拉定理:a^(φ(m))同余1(mod m) (a与m互质)

 

欧拉函数的线性筛法

    可在线性时间内求1~n的φ

 

    有以下三条性质:

  ①:φ(p)=p-1

 ②:φ(p*i)=p*φ(i) (当p%i==0时)

 ③:φ(p*i)=(p-1)*φ(i) (当p%i!=0时)

筛法基本与素数筛相同。
代码如下:

int prime[100001],mark[1000001];//prime是素数数组,mark为标记不是素数的数组

int tot,phi[100001];//phi为φ(),tot为1~i现求出的素数个数

void getphi(int N){

    phi[1]=1;//φ(1)=1

    for(int i=2;i<=N;i++){//从2枚举到N

        if(!mark[i]){//如果是素数

            prime[++tot]=i;//那么进素数数组,指针加1

            phi[i]=i-1;//根据性质1所得

        }

        for(int j=1;j<=tot;j++){//从现求出素数枚举

            if(i*prime[j]>N) break;//如果超出了所求范围就没有意义了

            mark[i*prime[j]]=1;//标记i*prime[j]不是素数

            if(i%prime[j]==0){//应用性质2

                phi[i*prime[j]]=phi[i]*prime[j];break;

            }

            else phi[i*prime[j]]=phi[i]*phi[prime[j]];//应用性质3

        }

    }

}

int N;

int main(){

    cin>>N;

    getphi(N);

    for(int i=1;i<=N;i++){

        cout<<i<<":phi ( "<<phi[i]<<" )"<<endl;//输出phi(i)

    }

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值