POJ1228 Grandpa's Estate 稳定凸包

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.

Input

The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.

Output

There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.

Sample Input

1
6 
0 0
1 2
3 4
2 0
2 4 
5 0

Sample Output

NO

题意:

给N个点,是某个凸包上的部分点,问这N个点是否可以确定一个唯一的凸包,这种凸包叫做稳定凸包;

比如,有4个点,他们连起来确实是一个凸包;

这4个点是某个凸包上的部分点,但原始的凸包可能不是这样的,比如:即这4个点构成的凸包不是稳定的

结论:当凸包的一条边上只有2个点时(即两个端点),这个凸包是不稳定的;

原因:可以在这条边外引入一个点,构成一个新的凸包。

如果一条边上点数大于等于3个,则不可能在找到一个点,使扩展成一个新的凸包,否则构成的多边形是凹的

这是一个典型的稳定凸包

这道题的做法是先求出N个点的凸包,然后判断每条边的点数,如果每条边的点数都大于等于3,输出YES,否则输出NO

如果N小于6,直接输出NO;先按极角进行排序,然后使用包括共线点的凸包模板求解;至于判断一条边上至少有3个点,假设要判断的边i,那么判断边i和边i-1,边i和边i+1的向量叉积是否都为0(夹角180度)。

//POJ--1228
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define  eps 1e-8
using namespace std;

struct  point
{
    double x,y;
};
point p[1010],stack[1010];
int N,top;
//叉积
double multi(point p1, point p2, point p3)
{
    return (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
}
//距离公式
double dis(point a, point b)
{
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
//极角排序比较器
bool cmp(point c, point d)
{
    double k = multi(p[0], c, d);
    if(k>0) return true;
    if(k<0) return false;
    return dis(c,p[0])<dis(d,p[0]);
}
//求凸包
void Convex()
{
    //第一个点p[0]为左下角的点
    for(int i = 1; i < N; i++)
    {
        point temp;
        if(p[i].y < p[0].y || ( p[i].y == p[0].y && p[i].x < p[0].x))
        {
            temp = p[i];
            p[i] = p[0];
            p[0] = temp;
        }
    }

    sort(p + 1, p+N , cmp);//不包括第一个点
    stack[0] = p[0];
    stack[1] = p[1];
    top = 1;
    for(int i = 2; i < N; i++)
    {
        while(top >= 1 && multi(stack[top - 1], stack[top], p[i]) < 0)     top--;
        //共线的点也压入凸包内;
        top++;
        stack[top] = p[i];
    }
}
//判断每条边是否有至少三个点;
bool judge()
{
    for(int  i=1;i<top;i++)
    {
        if((multi(stack[i-1],stack[i+1],stack[i]))!=0&&
        (multi(stack[i],stack[i+2],stack[i+1]))!=0)
            return false;
    }
    return true;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        cin>>N;
        for(int i=0;i<N;i++)
        scanf("%lf%lf",&p[i].x,&p[i].y);
        if(N<6)   puts("NO");
        else
        {
                Convex();
                if(judge())  puts("YES");
                else puts("NO");
        }
    }
    return 0;
}

 

阅读更多

Grandpa's Other Estate

09-19

DescriptionnnFrom our previous contest, we know that Kamran the Believer inherited many of his grandpa抯 belongings. Apparently, his grandpa had been a mathematician in his life with interests in puzzle solving, since he has made Kamran solve another programming problem! nGrandpa had a big garden with many valuable walnut trees. He has written in his will that Kamran can inherit one piece of square shaped land of a given size in the garden, such that its sides be parallel to the x and y axes. Taking advantage of the fact that no other restrictions have been mentioned in the will, Kamran wants to choose the land in which the most number of trees lie. Kamran is too wealthy now and thus too lazy to spend time and solve another algorithmic problem. He has hired you to solve this problem for him. nYou are given the location of all trees in the big garden and the size of the land to choose. You are to write a program to find out where to choose the land so that the most number of trees lie in it. You may consider trees as points in the plane and the land as a square. You are to find the position of the square such that it includes as many points as possible. Note that the points on the border of the square are considered to be inside it. nInputnnThe first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 100), the number of trees, and an integer r (1 <= r <= 1000), the length of the land's side, followed by n lines, each containing two integers x and y (0 <= x, y <= 100,000) representing the coordinates of a walnut tree. Note that all coordinates are pairwise distinct.nOutputnnThere should be one line per test case containing the maximum number of trees that Kamran can own.nSample Inputnn1 n3 1 n1 2 n2 1 n4 3 nSample Outputnn2

相关热词
换一批

Grandpa's Rubik Cube

06-07

A very well-known toy/pastime, called Rubik's cube, consists of a cube as shown in Figure 1a, where letters stand for colors (e.g. B for blue, R for red,...). The goal of the game is to rotate the faces of the cube in such a way that at the end each face has a different color, as shown in Figure 1b. Notice that,nnnnwhen a face is rotated, the configuration of colors in all the adjacent faces changes. Figure 2 illustrates a rotation of one of the faces. Given a scrambled configuration, reaching the final position can be quite challenging, as you may know.nnnnBut your grandpa has many years of experience, and claims that, given any configuration of the Rubik cube, he can come up with a sequence of rotations leading to a winning configuration.nnIn order to show all faces of the cube we shall represent the cube as in Figure 3a. The six colors are Yellow, Red, Blue, Green, White and Magenta (represented by their first letters).nnYou will be given an initial configuration and a list of rotations. A rotation will be represented by an integer number, indicating the face to be rotated and the direction of the rotation (a positive value means clockwise rotation, negative value means counter-clockwise rotation). Faces of the cube are numbered as shown in Figure 3b. You must write a program that checks whether the list of rotations will lead to a winning configuration.nnnnnInputnnThe input contains several test cases. The first line of the input is an integer which indicates the number of tests. Each test description consists of ten lines of input. The first nine lines of a test will describe an initial configuration, in the format shown in Figure 3a. The next line will contain a list of rotations, ending with the value 0.nnnOutputnnFor each test case your program should print one line. If your grandpa is correct, print "Yes, grandpa!", otherwise print "No, you are wrong!".nnnSample Inputnn3n G Y Yn G Y Yn G Y YnW W W Y R R M M M G G BnW W W Y R R M M M G G BnW W W Y R R M M M G G Bn R B Bn R B Bn R B Bn-1 0n G Y Yn G Y Yn G Y YnW W W Y R R M M M G G BnW M W Y R R M W M G G BnW W W Y R R M M M G G Bn R B Bn R B Bn R B Bn-1 0n M W Mn W W Gn W W YnG Y Y M M B M B G W R BnB Y Y M M B M G G W R RnY M G W B B R R G R R Wn R Y Yn G B Yn R G Bn+4 +6 -2 +3 -4 +2 -3 -6 0nnnSample OutputnnYes, grandpa!nNo, you are wrong!nYes, grandpa!

没有更多推荐了,返回首页