POJ1228 Grandpa's Estate 稳定凸包

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.


The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.


There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.

Sample Input

0 0
1 2
3 4
2 0
2 4 
5 0

Sample Output












#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define  eps 1e-8
using namespace std;

struct  point
    double x,y;
point p[1010],stack[1010];
int N,top;
double multi(point p1, point p2, point p3)
    return (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
double dis(point a, point b)
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
bool cmp(point c, point d)
    double k = multi(p[0], c, d);
    if(k>0) return true;
    if(k<0) return false;
    return dis(c,p[0])<dis(d,p[0]);
void Convex()
    for(int i = 1; i < N; i++)
        point temp;
        if(p[i].y < p[0].y || ( p[i].y == p[0].y && p[i].x < p[0].x))
            temp = p[i];
            p[i] = p[0];
            p[0] = temp;

    sort(p + 1, p+N , cmp);//不包括第一个点
    stack[0] = p[0];
    stack[1] = p[1];
    top = 1;
    for(int i = 2; i < N; i++)
        while(top >= 1 && multi(stack[top - 1], stack[top], p[i]) < 0)     top--;
        stack[top] = p[i];
bool judge()
    for(int  i=1;i<top;i++)
            return false;
    return true;

int main()
    int t;
        for(int i=0;i<N;i++)
        if(N<6)   puts("NO");
                if(judge())  puts("YES");
                else puts("NO");
    return 0;


Grandpa's Other Estate


DescriptionnnFrom our previous contest, we know that Kamran the Believer inherited many of his grandpa抯 belongings. Apparently, his grandpa had been a mathematician in his life with interests in puzzle solving, since he has made Kamran solve another programming problem! nGrandpa had a big garden with many valuable walnut trees. He has written in his will that Kamran can inherit one piece of square shaped land of a given size in the garden, such that its sides be parallel to the x and y axes. Taking advantage of the fact that no other restrictions have been mentioned in the will, Kamran wants to choose the land in which the most number of trees lie. Kamran is too wealthy now and thus too lazy to spend time and solve another algorithmic problem. He has hired you to solve this problem for him. nYou are given the location of all trees in the big garden and the size of the land to choose. You are to write a program to find out where to choose the land so that the most number of trees lie in it. You may consider trees as points in the plane and the land as a square. You are to find the position of the square such that it includes as many points as possible. Note that the points on the border of the square are considered to be inside it. nInputnnThe first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 100), the number of trees, and an integer r (1 <= r <= 1000), the length of the land's side, followed by n lines, each containing two integers x and y (0 <= x, y <= 100,000) representing the coordinates of a walnut tree. Note that all coordinates are pairwise distinct.nOutputnnThere should be one line per test case containing the maximum number of trees that Kamran can own.nSample Inputnn1 n3 1 n1 2 n2 1 n4 3 nSample Outputnn2

Grandpa's Rubik Cube


A very well-known toy/pastime, called Rubik's cube, consists of a cube as shown in Figure 1a, where letters stand for colors (e.g. B for blue, R for red,...). The goal of the game is to rotate the faces of the cube in such a way that at the end each face has a different color, as shown in Figure 1b. Notice that,nnnnwhen a face is rotated, the configuration of colors in all the adjacent faces changes. Figure 2 illustrates a rotation of one of the faces. Given a scrambled configuration, reaching the final position can be quite challenging, as you may know.nnnnBut your grandpa has many years of experience, and claims that, given any configuration of the Rubik cube, he can come up with a sequence of rotations leading to a winning configuration.nnIn order to show all faces of the cube we shall represent the cube as in Figure 3a. The six colors are Yellow, Red, Blue, Green, White and Magenta (represented by their first letters).nnYou will be given an initial configuration and a list of rotations. A rotation will be represented by an integer number, indicating the face to be rotated and the direction of the rotation (a positive value means clockwise rotation, negative value means counter-clockwise rotation). Faces of the cube are numbered as shown in Figure 3b. You must write a program that checks whether the list of rotations will lead to a winning configuration.nnnnnInputnnThe input contains several test cases. The first line of the input is an integer which indicates the number of tests. Each test description consists of ten lines of input. The first nine lines of a test will describe an initial configuration, in the format shown in Figure 3a. The next line will contain a list of rotations, ending with the value 0.nnnOutputnnFor each test case your program should print one line. If your grandpa is correct, print "Yes, grandpa!", otherwise print "No, you are wrong!".nnnSample Inputnn3n G Y Yn G Y Yn G Y YnW W W Y R R M M M G G BnW W W Y R R M M M G G BnW W W Y R R M M M G G Bn R B Bn R B Bn R B Bn-1 0n G Y Yn G Y Yn G Y YnW W W Y R R M M M G G BnW M W Y R R M W M G G BnW W W Y R R M M M G G Bn R B Bn R B Bn R B Bn-1 0n M W Mn W W Gn W W YnG Y Y M M B M B G W R BnB Y Y M M B M G G W R RnY M G W B B R R G R R Wn R Y Yn G B Yn R G Bn+4 +6 -2 +3 -4 +2 -3 -6 0nnnSample OutputnnYes, grandpa!nNo, you are wrong!nYes, grandpa!


  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他