AtCoder Regular Contest 083 D

题意:
n 个点的无向图。给你两两点对间最短路。最小化原图边权。若不存在原图输出1.
n<=300

显然:原图中边权只可能是给出的最短路的边权。

考虑原图最短路是怎么得到的,我们用两个短的距离去更新长的距离。
所以要先有短的边,再有长的边。

所以我们考虑对最短路的边进行排序,排序后从小到大加入图中。
如果这条边边权等于两点间最短路,则不加入。如果小于两点间最短路,加入并更新,如果大于两点间最短路,输出1.

(nn1)/2 条边,每次判断最短路O(n2)。 复杂度O((n4n3)/2)

然而 标算并不是这样的…
考虑完全图删边。如果一条边删除后对最短路没有影响,那么他是不必要的。复杂度O(n5)
再结合最短路过程中的更新边。三条边形成了三角形。
对于一条边e(u,v),当存在dis[u][k]+dis[k][j]==dis[u][j]时,这条边是不必要的。
直接枚举判断 复杂度O(n3)

//非标算但能跑过
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>par;
typedef pair<par,int>pii;
const ll INF=1e18+7;
#define mp make_pair

int n;
vector<pii>vec;

bool cmp(pii a,pii b){
    return a.second<b.second;
}

ll dis[305][305];

void floyd(int k){
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(dis[i][k]+dis[k][j]<dis[i][j])dis[i][j]=dis[j][i]=dis[i][k]+dis[k][j];
        }
    }
}

int main(){
    freopen("graph.in","r",stdin);
    freopen("graph.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)dis[i][j]=INF;
    for(int i=1;i<=n;i++)dis[i][i]=0;

    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            int tmp;
            scanf("%d",&tmp);
            if(j>i)vec.push_back(mp(mp(i,j),tmp));
        }
    }
    sort(vec.begin(),vec.end(),cmp);
//  for(int i=0;i<vec.size();i++)cout<<vec[i].first.first<<" "<<vec[i].first.second<<" "<<vec[i].second<<endl;
    ll ans=0;
    for(int i=0;i<vec.size();i++){
        int u=vec[i].first.first,v=vec[i].first.second;
        ll w=vec[i].second;
        if(dis[u][v]<w){puts("-1");return 0;}
        else if(dis[u][v]>w){
        //  cout<<u<<" "<<v<<"sas "<<dis[u][v]<<endl;
            dis[u][v]=dis[v][u]=w;
            ans+=w;
            floyd(u);
            floyd(v);
        }
    }
    cout<<ans<<endl;
    return 0;
}
/*
3
0 1 3
1 0 1
3 1 0
*/
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_40512553/article/details/79975882
个人分类: 最短路
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭