图的广度优先遍历及其应用

广度优先遍历

图的广度优先遍历和树的广度优先遍历本质是一样的。 由于图大多有环,我们需要在进行图的广度优先遍历时,我么需要记住那些顶点已经被遍历过。 树的广度优先遍历又叫树的层序遍历,通常使用一个队列 来实现。

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;

public class GraphBFS {
    private Graph g;
    private boolean[] visited;
    private ArrayList<Integer> order = new ArrayList<>();

    public GraphBFS(Graph g) {
        this.g = g;
        visited = new boolean[g.V()];

        for (int v = 0; v < g.V(); v++) {

            if (!visited[v]) {
                bfs(v);
            }
        }
    }

    private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s) ;
        visited[s] = true;

        while (!queue.isEmpty()){
            int v = queue.poll();
            order.add(v) ;
            for(int w : g.adj(v)){
                if(!visited[w]){
                    queue.offer(w) ;
                    visited[w] = true;
                }
            }
        }
    }
    public  Iterable<Integer> order(){
        return order;
    }
    public  static  void main(String[] args){
        Graph g = new Graph("g.txt");
        GraphBFS graphBFS =new GraphBFS(g);
        System.out.println("BFS order:"+ graphBFS.order());
    }
}

时间复杂度 : O(V +E) 所有的顶点都入了一次队伍 V , 每个边都遍历了一次for (int w : g.adj(v) E 所有深度优先遍历能解决的问题,广度优先遍历都可以解决。

BFS求解单源路径问题

对起点s进行一次广度优先遍历,同样,需要像深度优先遍历一样,我们需要一个数组pre记录在遍历过程中,每一个顶点的前驱顶点(从哪一个顶点到达当前这个顶点)。 pre[ 0…v-1] = -1初始时,都为-1 表示还没有遍历过,(没有遍历过,自然就不存在前驱) 同样,这个数组可以取代visited数组 为了语义清晰,我们还是使用visited作为访问标记数组。 下面只需要对BFS方法进行小小从改动,就可以求解单源路径问题。

 private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s) ;
        visited[s] = true;
        pre[s] = s;   // 第一处改动

        while (!queue.isEmpty()){
            int v = queue.poll();
  
            for(int w : g.adj(v)){ // v的所有邻接点都是w
                if(!visited[w]){
                    queue.offer(w) ;
                    visited[w] = true;
                    pre[w] = v ; // 第二处改动
                }
            }
        }
    }

下面是完整的代码:

import java.util.*;

public class SingleSourcePathBFS {
    private Graph g;
    private boolean[] visited;
    private int[] pre;
    private int s;

    public SingleSourcePathBFS(Graph g, int s) {
        this.g = g;
        this.s = s;
        visited = new boolean[g.V()];
        pre = new int[g.V()];
        for (int i = 0; i < g.V(); i++) {
            pre[i] = i;
        }
        bfs(s); // s到其他连通分量是不可达的

    }
    // 广度优先遍历寻路
    private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s);
        visited[s] = true;
        pre[s] = s; // 改动1 添加起点s的上一个顶点就是自己

        while (!queue.isEmpty()) {
            int v = queue.poll();
            for (int w : g.adj(v)) {
                if (!visited[w]) {
                    queue.offer(w);
                    visited[w] = true;
                    pre[w] = v; //改动2 v的所有邻接点w的前驱都是v
                }
            }
        }
    }

    //判断顶点s到顶点t是否可达 如果被遍历到了肯定是可达的
    public boolean isConnectionTo(int t) {
        g.validateVertax(t);
        return visited[t];
    }
   // 返回起点s到目标点t的路径
    public Iterable<Integer> path(int t) {
        ArrayList<Integer> res = new ArrayList<>();
        if (!isConnectionTo(t))
            return res;

        int cur = t;
        while (cur != s) {
            res.add(cur);
            cur = pre[cur];
        }
        res.add(s);
        Collections.reverse(res);
        return res;
    }

    public  static  void  main(String[] args){

        Graph g = new Graph("g.txt");
        SingleSourcePathBFS singleSourcePathBFS =new SingleSourcePathBFS(g, 0) ;
        System.out.println("0-->6:"+singleSourcePathBFS.path(6));
    }
}

其他BFS的应用, 比如求解连通分量的个数, 具体的连通分量 、环检测、二分图检测 下面一一给出参考代码

BFS求解联通分量的个数

关于读取图的文件,建立图,可以参考我的往期文章,图的基本表示

import java.util.LinkedList;
import java.util.Queue;

// 使用广度优先遍历求解连通分量的个数
public class CcBfs {
    private Graph g;
    private boolean[] visited;
    private int ccount = 0; // 统计连通分量的个数

    public CcBfs(Graph g) {
        this.g = g;
        visited = new boolean[g.V()];

        for (int v = 0; v < g.V(); v++) {

            if (!visited[v]) {
                bfs(v);
                ccount++;
            }
        }
    }
	// 广度优先遍历,对图的一个连通分量进行遍历标记
    private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        visited[s] = true;
        queue.offer(s);

        while (!queue.isEmpty()) {
            int v = queue.poll();
            for (int w : g.adj(v)) {

                if (!visited[w]) {
                    visited[w] = true;
                    queue.offer(w);
                }
            }
        }
    }
	// 返回连通分量的个数
    public int getCcount() {
        return ccount;
    }

    public static void main(String[] args) {
        Graph g = new Graph("g.txt");
        Graph g2 =new Graph( "g2.txt") ;
        CcBfs ccBfs = new CcBfs(g);
        CcBfs ccBfs2 =new CcBfs(g2) ;
        System.out.println(ccBfs.getCcount());
        System.out.println(ccBfs2.getCcount());
    }
}

具体的每一个连通分量都包含哪些顶点

就像在广度优先遍历中 求解每一个顶点属于哪个连通分量 的方法一样,我们同样 我们可以新开一个int 类型的数组,下标代表顶点编号,值保存 该顶点属于哪一个连通分量。或者直接把visited数组改造成 int 类型 初始全部为-1,承担双重语义。 这里我选择新开一个数组 , 这样使得代码更加容易阅读。

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;

public class CcBfsAdv {
    private Graph g;
    private boolean[] visited;
    private int[] comp;
    private int ccount;

    public CcBfsAdv(Graph g) {
        this.g = g;
        ccount = 0;
        visited = new boolean[g.V()];
        comp = new int[g.V()];
        for (int v = 0; v < g.V(); v++)
            comp[v] = -1;
        for (int v = 0; v < g.V(); v++) {
            if (!visited[v]) {
                bfs(v);
                ccount++;
            }
        }
    }

    // 我们在标记顶点属于哪个连通分量有两种方式,一种是在顶点出队的时候标记 一种是在入队的时候进行标记
    //  不管使用哪种方式,唯一要保证的是,在一次bfs的过程中,所有遍历的顶点都要标记上属于哪个连通分量
    // 一次bfs过程中遍历到的顶点 属于同一个连通分量
    private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s);
        visited[s] = true;

        while (!queue.isEmpty()) {
            int v = queue.poll();
            comp[v] = ccount;  // 出队的时候进行标记

            for (int w : g.adj(v)) {
                if (!visited[w]) {
                    queue.offer(w);
                    visited[w] = true;
                }
            }
        }
    }

    // 返回每一个连通分量的顶点集合  返回类型是一个ArrayList 数组
    public ArrayList<Integer>[] components() {
        ArrayList<Integer>[] res = new ArrayList[ccount];
        for (int i = 0; i < ccount; i++)
            res[i] = new ArrayList<>();

        for (int v = 0; v < comp.length; v++) {

            res[comp[v]].add(v);

        }
        return res;

    }

    //判断两个顶点是否在同一个连通分量中
    public boolean isconnection(int s, int t) {
        g.validateVertax(s);
        g.validateVertax(t);
        return comp[s] == comp[t];

    }

    // 打印整个连通分量标记数组
    public   void  showCount(){
        System.out.print("components:  ");
        for(int  e  : comp){
            System.out.print(e + "  ");
        }

        System.out.println();
    }

    // 测试
    public  static  void  main(String [ ] args){

        Graph  g = new Graph("g.txt");
        CcBfsAdv ccBfsAdv =new CcBfsAdv(g) ;
        ArrayList<Integer> [] components = ccBfsAdv.components();
        for(int ccid = 0 ;ccid< components.length ;ccid++){

            System.out.print("ccid " + ccid+" : ");
            for(int v : components[ccid]){
                System.out.print(v+" ");

            }
            System.out.println();

        }
    }
}

环检测

我们先考虑一下,图中没有环是什么情况,如果图中没有环,对于每一个连通分量来说,这个连通分量一定是一棵树。如果是多个连通分量,组成的就是一片森林。 鉴于我们使用广度优先遍历,一层一层向外扩展扫描, 那么,如果当前我们在 顶点v 此时要向外遍历一层,也就是遍历它所有的邻接顶点w , 如果此时发现 邻接点中有一个顶点已经别访问过了, 并且这个顶点还不是顶点v的前驱, 那么 我们就说现在找到了一个环。

想像一下,我们面对的是一个一个的由道路连接起来的城市。当我们站在城市A 向外访问它的相邻的城市B ,此时发现城市B已经被访问了。 试想,我们是一层一层向外访问, 此时却发现,A的下一层中的某一城市B已经被访问了, 如果这个城市B不是A的前驱,那么一定有另一条从起点到B的路存在。并且这个起点到B的路径 比 起点先到A再由A到B要更短。 那么我们知道了,从起点到A A到B 在由B通过更短的路径回到起点,这样就构成了一个环。

import java.util.LinkedList;
import java.util.Queue;

public class CycleDetection {
    private Graph g;
    private boolean[] visited;
    private int[] pre;
    private boolean hasCycle = false;

    public CycleDetection(Graph g) {
        this.g = g;
        visited = new boolean[g.V()];
        pre = new int[g.V()];
        for (int v = 0; v < pre.length; v++)  // 初始时,每一个顶点的前驱都是自己
            pre[v] = v;
        for (int v = 0; v < g.V(); v++) {
            if (!visited[v]) {
                if (bfs(v)) {
                    hasCycle = true;  // 找到一个环之后,就停下来
                    break;
                }
            }
        }
    }

    private boolean bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s);
        visited[s] = true;
        pre[s] = s;

        while (!queue.isEmpty()) {
            int v = queue.poll();
            for (int w : g.adj(v)) {
                if (!visited[w]) {
                    queue.offer(w);
                    visited[w] = true;
                    pre[w] = v;
                    //  只需要在这里进行改动 如果w这个顶点已经被访问过,并且不是v的前驱顶点  那么就出现了环
                } else if (pre[v] != w) 
                    return true;
            }
        }

        return false;
    }
    public  boolean isHasCycle(){
        return  hasCycle;
    }

    public  static  void  main(String[] args){
        Graph g  = new Graph("g.txt");
        Graph g2 = new Graph("g2.txt");
        CycleDetection  cycleDetection  = new CycleDetection(g) ;
        CycleDetection cycleDetection2 = new CycleDetection(g2);
        System.out.println(cycleDetection.isHasCycle());
        System.out.println(cycleDetection2.isHasCycle());

    }
}

二分图的检测

使用广度优先遍历 也可以对二分图进行检测,其实也比较简单。 对于二分图来说,每一个顶点和它相邻的顶点类别都不同, 或者颜色都不同(如果用染色来形容的话)。那么我们就知道了, 我们的广度优先遍历是从起点 s 一层一层向外扩展的。s和它相邻的一层颜色不同, s相邻的一层 和它的下一层颜色也不相同。 总的来说,就是,在广度优先遍历一圈一圈向外扩散时,相邻的两层颜色是不同的。

那么我们的思路就是,顶点w的邻接点 如果还没有染色的话,我们就把它染成 与顶点w不同的颜色,如果已经染色的话,我们就要看看,这个颜色和顶点w是不是相同, 如果相同,那么 这不是一个二分图。 基于这样的逻辑来编写我们的代码:

import java.util.LinkedList;
import java.util.Queue;

public class BipartitionDetection {
    private Graph g;
    private boolean[] visited;
    private int[] colors;
    private int color = 0;
    private boolean isBipartition;

    public BipartitionDetection(Graph g) {
        this.g = g;
        isBipartition = true; // 初始赋值为true
        visited = new boolean[g.V()];
        colors = new int[g.V()];
        for (int v = 0; v < g.V(); v++)
            colors[v] = -1; // 初始赋值都为-1 表示当前顶点还没有进行染色

        for (int v = 0; v < g.V(); v++) {

            if (!visited[v]) {

                if (!bfs(v)) { //  如果检测出不是二分图  提前终止循环
                    isBipartition = false;
                    break;
                }
            }
        }
    }

    private boolean bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s);
        visited[s] = true;
        colors[s] = color;

        while (!queue.isEmpty()) {
            int v = queue.poll();
            for (int w : g.adj(v)) {
                if (!visited[w]) {
                    queue.offer(w);
                    visited[w] = true;
                    colors[w] = 1 - colors[v]; //染色
                } else if (colors[w] == colors[v])//  判断 
                    return false;
            }
        }
        return true;
    }

    public  boolean isBipartition(){
        return  isBipartition;
    }

    public  static  void  main(String[] args){
        Graph g = new Graph("g.txt");
        Graph g2 = new Graph("g2.txt");
        BipartitionDetection bipartitionDetection =new BipartitionDetection(g);
        BipartitionDetection bipartitionDetection2 =new BipartitionDetection(g2) ;
        System.out.println(bipartitionDetection.isBipartition());
        System.out.println(bipartitionDetection2.isBipartition());
    }
}

BFS的重要性质

广度优先遍历得到的是最短路径。一层一层向外遍历。 后遍历的顶点一定是基于先遍历的顶点的。

首先遍历1步就能到达的顶点,然后在遍历2步才能到达的顶点,然后遍历3步才能到达的顶点 依次类推。这个遍历是顺次的。当遍历到这个点时,一定是最早到达的时刻。

我们如何快速获得每一个顶点距离起始点的距离呢?我们现在讲的是无权图,每一个顶点到起点的距离是它的前驱顶点到起点距离+1

import java.util.*;

public class UnweightSingleSourcePathBFS {
    private Graph g;
    private int s;
    private boolean[] visited;
    private int[] pre;
    private int[] dis; // 各个点到起点的距离

    public UnweightSingleSourcePathBFS(Graph g, int s) {
        this.g = g;
        this.s = s;
        visited = new boolean[g.V()];
        pre = new int[g.V()];
        dis = new int[g.V()];
        for (int i = 0; i < g.V(); i++) {

            pre[i] = i;
            dis[i] = -1;
        }

        bfs(s);

    }

    private void bfs(int s) {
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(s);
        visited[s] = true;
        pre[s] = s;
        dis[s] = 0; // 起点的距离标记为0
        while (!queue.isEmpty()) {
            int v = queue.poll();
            for (int w : g.adj(v)) {
                if (!visited[w]) {
                    queue.offer(w) ;
                    pre[w] = v;
                    visited[w] = true;
                    dis[w] = dis[v] + 1; // 这里就是距离
                }
            }
        }
    }

    private boolean isConnectedTo(int t) {
        g.validateVertax(t);
        return visited[t];
    }

    public int distance(int t) {
        g.validateVertax(t);
        return dis[t];
    }

    public Iterable<Integer> path(int t) {
        g.validateVertax(t);
        ArrayList<Integer> res = new ArrayList<>();
        if (!isConnectedTo(t)) return res;

        int cur = t;
        while (cur != s) {
            res.add(cur);
            cur = pre[cur];
        }
        res.add(s);
        Collections.reverse(res);
        return res;

    }

    public static  void main(String[] args){
        Graph g= new Graph("g.txt");
        UnweightSingleSourcePathBFS ussp = new UnweightSingleSourcePathBFS(g,0) ;
        System.out.println("0-->6: " + ussp.path(6));
        System.out.println("0-->6: " +ussp.distance(6));
        System.out.println(ussp.isConnectedTo(6));
    }
}

小结

BFS 求解的最短路径 , 只能用于无权图 。

深度优先遍历和广度优先遍历之间有什么联系:

在这里插入图片描述

非递归的DFS和BFS算法在逻辑的逻辑上一模一样。只是bfs把栈换成了队列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值