LeetCode:1260.二维网格迁移

给你一个 n 行 m 列的二维网格 grid 和一个整数 k。你需要将 grid 迁移 k 次。

每次「迁移」操作将会引发下述活动:

  • 位于 grid[i][j] 的元素将会移动到 grid[i][j + 1]
  • 位于 grid[i][m - 1] 的元素将会移动到 grid[i + 1][0]
  • 位于 grid[n - 1][m - 1] 的元素将会移动到 grid[0][0]

请你返回 k 次迁移操作后最终得到的 二维网格

 

示例 1:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[9,1,2],[3,4,5],[6,7,8]]

示例 2:

输入:grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
输出:[[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

示例 3:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
输出:[[1,2,3],[4,5,6],[7,8,9]]

 

提示:

  • 1 <= grid.length <= 50
  • 1 <= grid[i].length <= 50
  • -1000 <= grid[i][j] <= 1000
  • 0 <= k <= 100

 

 

 

代码演示


class Solution 
{
public:
    vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k) 
    {
        int n = grid.size(), m = grid[0].size();
        vector<vector<int>> result(n, vector<int>(m, 0));
        for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) result[((i * m) + j + k) % (n * m) / m][((i * m) + j + k) % (n * m) % m] = grid[i][j];
        return result;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值