给你一个 n
行 m
列的二维网格 grid
和一个整数 k
。你需要将 grid
迁移 k
次。
每次「迁移」操作将会引发下述活动:
- 位于
grid[i][j]
的元素将会移动到grid[i][j + 1]
。 - 位于
grid[i][m - 1]
的元素将会移动到grid[i + 1][0]
。 - 位于
grid[n - 1][m - 1]
的元素将会移动到grid[0][0]
。
请你返回 k
次迁移操作后最终得到的 二维网格。
示例 1:
输入:grid
= [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[9,1,2],[3,4,5],[6,7,8]]
示例 2:
输入:grid
= [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
输出:[[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]
示例 3:
输入:grid
= [[1,2,3],[4,5,6],[7,8,9]], k = 9
输出:[[1,2,3],[4,5,6],[7,8,9]]
提示:
1 <= grid.length <= 50
1 <= grid[i].length <= 50
-1000 <= grid[i][j] <= 1000
0 <= k <= 100
代码演示
class Solution
{
public:
vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k)
{
int n = grid.size(), m = grid[0].size();
vector<vector<int>> result(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) result[((i * m) + j + k) % (n * m) / m][((i * m) + j + k) % (n * m) % m] = grid[i][j];
return result;
}
};