数据科学团队的角色分工

文章通过雷达图展示了数据科学团队中不同角色如数据工程师、机器学习工程师、数据科学家和业务分析师的能力分布,强调了在数据处理、机器学习建模、业务洞察和数据可视化等方面的关键技能。同时,解释了如何使用matplotlib创建雷达图,包括角度设置、数据填充和标签设定等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述数据科学团队中角色分工常用下列维度。进一步以数据可视化直观表达的能力雷达图:

ML Ops - 机器学习运维

Data Pipelines - 数据流水线

Database - 数据库

Data Viz - 数据可视化

Storytelling - 数据讲故事

Business Insights - 业务洞察

Reporting - 报告

Experimentation - 实验

Stats - 统计

ML Modeling - 机器学习建模

Deployment - 部署

编码实现 Radar Chat

# DS岗位的能力雷达图谱

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')

rules = ['Data Engineer','ML Engineer','Data Scientists','Data Analysts']

# 添加极坐标网格和标签
# 极轴彼此间隔 360/11 度,角度作为标签提供
# 使用set_thetagrids功能自定义角度和标签的间距。

subjects = ['ML Ops','Data Pipelines','Database','Data Viz','Storytelling','Business Insights','Reporting','Experimentation','Stats','ML Modeling','Deploiomont']

DataEngieer = [80,100,100,20,30,30,44,30,30,30,35]
MLEngineer = [100,60,60,25,30,30,40,80,80,90,100]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值