贝叶斯统计入门

贝叶斯统计入门

贝叶斯统计是一种以系统和数学严密的方式来推理不确定性的方法。它以18世纪的数学家和哲学家托马斯·贝叶斯命名,他开发了一个定理,提供了一种在收集新数据时更新我们对假设的信念的方式。

在贝叶斯统计中,我们从一个先验概率分布开始,它代表了我们在看到任何数据之前对假设的信念。随着我们收集新数据,我们使用贝叶斯定理来更新这个先验分布,得到一个后验概率分布,它代表了在考虑我们观察到的数据后对假设的信念。

例子

为了举例说明,假设我们想要估计在即将举行的选举中将投票给某位候选人的选民比例。

我们首先有一个先验信念,即将投票给该候选人的选民比例在0到1之间是均匀分布的。随着我们收集新数据,比如一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值