Python新建序列,怎么写更快

本文介绍如何使用Python处理整数序列,比较了for循环、列表解析、numpy和Numba等方法的效率。通过实例展示Numba在大数据量下的优势,并提及了ChatGPT在教学中的应用。
摘要由CSDN通过智能技术生成

大家好,欢迎来到 Crossin的编程教室~

一组1000万个0~100的整数序列,用它来生成一个新的序列,要求如果原本序列中是奇数就不变,如果是偶数就变成原来的一半。

5c392b106476212894e5660bb08b7d42.png

你会怎么写?

来看几份参考答案:

青铜:

def for_method(data):
    result = []
    for x in data:
        if x % 2 == 0:
            result.append(x // 2)
        else:
            result.append(x)
    return result
‍

(自测耗时:0.95秒)

新建一个空列表,for循环遍历原列表,依次判断每个元素,如果能被2整除就除以2添加进新列表,否则直接添加进新列表。

白银:

def lc_method(data):
    return [x if x % 2 else x // 2 for x in data]

(自测耗时:0.75秒)

通过列表解析式生成新列表,不仅代码更简洁明了,耗时还变少了。

黄金:

def numpy_method(data):
    arr = np.array(data)
    return np.where(arr % 2 == 0, arr // 2, arr).tolist()

(自测耗时:0.90秒)

用numpy的where方法生成新的数组。看起来效率好像还不如列表解析式嘛?这是因为大部分时间都花在了列表和ndarray的转换上。如果这组序列本身就用numpy的数组来存储的话:

def numpy_array_method(data):
    return np.where(data % 2 == 0, data // 2, data)

(自测耗时:0.32秒)

速度直接碾压列表解析式。

王者:

@numba.jit(nopython=True)
def numba_method(data):
    result = np.copy(data)
    for i in range(len(data)):
        if result[i] % 2 == 0:
            result[i] //= 2
    return result

(自测耗时:0.65秒)

还是用for循环,不过给函数加上一个装饰器,表示用Numba JIT编译,这个看起来平平无奇的写法会有什么效果呢?好像也没有比直接用numpy快多少嘛?

别急,让我们加大剂量,把序列长度调整到1亿,优势就体现出来了。(numba:1.21秒 vs numpy:3.04秒)

你还有其他写法吗?

作者:Crossin的编程教室


Crossin的新书《码上行动:用ChatGPT学会Python编程》已经上市了。本书以ChatGPT为辅助,系统全面地讲解了如何掌握Python编程,适合Python零基础入门的读者学习。【点此查看详细介绍】

购买后可加入读者交流群,Crossin为你开启陪读模式,解答你在阅读本书时的一切疑问。


添加微信 crossin123 ,加入编程教室共同学习~

3cd2cdc74e711c280e57ec54c2fc6e46.jpeg

感谢转发点赞的各位~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crossin的编程教室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值