Tags:斐波那契 递推
题意:一个2*N的长方形格子,放入N个1*2的骨牌,有几种方法?
解析:最初想着用分治算法,一想可能还要考虑顺序关系,是个死胡同。找了下规律,原来是斐波那契。原来我可以不把结果分成一个整体,而是用递推的方法,由前面的结果推出以后的结果。
分为两种情况。一是竖着放一个,其余的放置方法就是f[n-1] ,二是横着放两个,则其余的放置方法就是f[n-2] 。注意这两种放置情况不互相交叉,所以不考虑竖着放两个的情况。最终得到经典的 f[n] = f[n-1] + f[n-2] 。
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <iomanip>
#include <bitset>
using namespace std;
#define eps (1e-6)
#define LL long long
#define pi acos(-1.0)
#define ALL(a) (a.begin(),(a.end())
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define IOS cin.tie(0) , cout.sync_with_stdio(0)
#define PRINT(a,b) cout << "#" << (a) << " " << (b) << endl
#define DEBUG(a,b) cout << "$" << (a) << " " << (b) << endl
#define line cout << "\n--------------------\n"
const LL INF = 1e18+100;
const int MAXN = 1e3+5;
const int MOD = 1e9+7;
int n;
LL f[MAXN];
void SOLVE()
{
f[0] = f[1] = 1;
f[2] = 2;
for(int i=3; i<=n; ++i){
f[i] = (f[i-1] + f[i-2])%MOD;
}
cout << f[n];
return;
}
int main()
{
IOS;
cin >> n;
SOLVE();
return 0;
}