51Nod 1031 骨牌覆盖

传送门

Tags:斐波那契 递推

题意:一个2*N的长方形格子,放入N个1*2的骨牌,有几种方法?

解析:最初想着用分治算法,一想可能还要考虑顺序关系,是个死胡同。找了下规律,原来是斐波那契。原来我可以不把结果分成一个整体,而是用递推的方法,由前面的结果推出以后的结果。

分为两种情况。一是竖着放一个,其余的放置方法就是f[n-1] ,二是横着放两个,则其余的放置方法就是f[n-2] 。注意这两种放置情况不互相交叉,所以不考虑竖着放两个的情况。最终得到经典的 f[n] = f[n-1] + f[n-2] 

代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <iomanip>
#include <bitset>
using namespace std;

#define eps         (1e-6)
#define LL          long long
#define pi          acos(-1.0)
#define ALL(a)      (a.begin(),(a.end())
#define ZERO(a)     memset(a,0,sizeof(a))
#define MINUS(a)    memset(a,0xff,sizeof(a))
#define IOS         cin.tie(0) , cout.sync_with_stdio(0)
#define PRINT(a,b)  cout << "#" << (a) << " " << (b) << endl
#define DEBUG(a,b)  cout << "$" << (a) << " " << (b) << endl
#define line        cout << "\n--------------------\n"

const LL INF = 1e18+100;
const int MAXN = 1e3+5;
const int MOD = 1e9+7;
int n;
LL f[MAXN];

void SOLVE()
{
    f[0] = f[1] = 1;
    f[2] = 2;
    for(int i=3; i<=n; ++i){
        f[i] = (f[i-1] + f[i-2])%MOD;
    }
    cout << f[n];
    return;
}

int main()
{
    IOS;
    cin >> n;
    SOLVE();
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值