步骤一:将图片转为base64编码
http://tool.chinaz.com/tools/imgtobase/
步骤二:运行代码
import json
import base64
import uuid
import os
import cv2
from flask import Flask, request
from mmdet.apis import inference_detector, init_detector
# 模型初始化
model = init_detector(config='./configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py',
                      checkpoint='./pretrain/mmdet_R_89.4.pth',
                      device='cuda:0')     # device: 'cuda:id' or 'cpu'
app = Flask(__name__)
@app.route('/page-seg', methods=["POST"])
def page_seg_service():
    # 数据获取
    info_list = request.get_data().decode("utf-8")
    info_list = json.loads(info_list, encoding="utf-8")
    img_base64 = info_list['img']
    # base64转为png并存储
    img_str = img_base64.encode().split(b';base64,')[-1]
    img_str = base64.b64decode(img_str)
    jobid = uuid.uuid1().__str__()
    img
                
                  
                  
                  
                  
本文介绍了如何使用Flask将模型部署为Web服务。首先,将图片转换为base64编码,然后运行Flask应用代码,最后通过Postman以Post方式发送包含base64编码图片的请求进行测试。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1098
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            