flask将模型部署为web service

本文介绍了如何使用Flask将模型部署为Web服务。首先,将图片转换为base64编码,然后运行Flask应用代码,最后通过Postman以Post方式发送包含base64编码图片的请求进行测试。

步骤一:将图片转为base64编码

http://tool.chinaz.com/tools/imgtobase/

 

步骤二:运行代码

import json
import base64
import uuid
import os
import cv2

from flask import Flask, request
from mmdet.apis import inference_detector, init_detector

# 模型初始化
model = init_detector(config='./configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py',
                      checkpoint='./pretrain/mmdet_R_89.4.pth',
                      device='cuda:0')     # device: 'cuda:id' or 'cpu'

app = Flask(__name__)


@app.route('/page-seg', methods=["POST"])
def page_seg_service():

    # 数据获取
    info_list = request.get_data().decode("utf-8")
    info_list = json.loads(info_list, encoding="utf-8")
    img_base64 = info_list['img']

    # base64转为png并存储
    img_str = img_base64.encode().split(b';base64,')[-1]
    img_str = base64.b64decode(img_str)
    jobid = uuid.uuid1().__str__()

    img
<think>嗯,用户的问题很明确,就是想知道DeepSeek本地部署的核心代码逻辑位置。看来用户已经有一定技术背景,可能是个开发者或者DevOps工程师,正在调研本地化部署方案。回顾之前提供的部署指南,主要提到了两种部署方式:Ollama和手动HuggingFace部署。用户现在聚焦在“核心代码逻辑”上,这需要更深入的技术实现细节。核心逻辑应该包含几个关键部分:-模型加载:从HuggingFace或本地加载模型文件-推理流程:文本编码->模型计算->文本解码的全过程-服务封装:将推理能力包装成API服务重点在于HuggingFaceTransformers库提供的AutoModel接口,具体代码实现会集中在这几处:1.transformers/src/transformers/models/auto/auto_factory.py里的from_pretrained方法2.deepseek-ai项目的modeling_deepseek.py文件(如果单独发布)3.模型配置文件如config.json中指定的architectures字段Ollama方案相对黑盒,但可以通过ollama源码的ollama/llm/generator.go追踪推理过程。考虑到用户可能更关注开源方案,应该优先推荐HuggingFace实现。用户引用列表里提到华为云CodeArtsIDE和CSDN的资料,虽然提供了本地部署场景的价值说明(数据安全/低延迟等),但都没涉及具体代码位置,这部分可以不重点提。需要提醒用户注意版本差异:DeepSeek-R1和CodeLlama版实现可能有差异。如果用HuggingFace部署,一定要选对模型ID,并确保transformers库版本在4.35以上。最后补充量化支持的说明很必要,毕竟用户提到本地部署往往有硬件限制。具体实现可以在deepspeed库的ds_quant.py找到相关逻辑。</think> 在 DeepSeek 本地部署中,核心代码逻辑主要分布在以下几个关键位置,以下是具体分析和代码路径说明: --- ### 一、模型加载核心逻辑 通过 HuggingFace Transformers 库加载模型和分词器的核心代码: ```python # huggingface_model_loader.py from transformers import AutoModelForCausalLM, AutoTokenizer # 核心加载逻辑(位于 transformers 库内部) # 文件路径:transformers/src/transformers/models/auto/auto_factory.py model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-r1-7b", # 模型标识符 torch_dtype="auto", # 自动选择精度 device_map="auto" # 自动分配设备 ) tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-7b") ``` ▶ **代码逻辑位置**: HuggingFace Transformers 库的 `from_pretrained()` 方法中(约 2000+ 行核心逻辑),主要处理: 1. 配置文件解析:加载 `config.json`[^3] 2. 模型权重加载:从 `pytorch_model.bin` 加载参数 3. 设备分配:根据 `device_map` 自动分配 GPU/CPU --- ### 二、推理流水线核心代码 文本生成的核心计算逻辑: ```python # inference_pipeline.py inputs = tokenizer("解释量子计算", return_tensors="pt").to(model.device) outputs = model.generate( inputs.input_ids, max_length=500, # transformers/generation/utils.py do_sample=True ) ``` ▶ **关键文件路径**: 1. Tokenization:`transformers/tokenization_utils_base.py`(约 3000 行) 2. 生成策略:`transformers/generation/utils.py`(约 5000 行代码) - 实现 beam search/top-k sampling 等解码算法 3. 模型前向计算:`deepseek-ai/modeling_deepseek.py`(模型特有层实现)[^2] --- ### 三、本地服务封装逻辑 启动 API 服务的核心代码: ```python # api_server.py (text-generation-webui) from modules.text_generation import generate_reply @app.route('/v1/completions', methods=['POST']) def generate(): prompt = request.json['prompt'] result = generate_reply( # 路径:modules/text_generation.py prompt, max_new_tokens=500 ) return jsonify(result) ``` ▶ **关键文件**: 在 [text-generation-webui](https://github.com/oobabooga/text-generation-webui) 项目中: 1. 核心生成器:`modules/text_generation.py`(约 1500 行) 2. API 路由:`extensions/api/__init__.py` --- ### 四、性能优化核心模块 显存优化相关代码: ```python # 量化加载(4-bit) model = AutoModelForCausalLM.from_pretrained( "deepseek-r1-7b", load_in_4bit=True, # 核心实现在 bitsandbytes 库 bnb_4bit_compute_dtype=torch.float16 ) ``` ▶ **底层优化位置**: 1. 4-bit 量化:`bitsandbytes/nn/modules.py`(Linear4bit 类) 2. Flash Attention:`transformers/modeling_utils.py`(约第 1200 行) --- ### 典型项目结构示例 ``` deepseek-deploy/ ├── model/ # 模型文件 │ ├── config.json # 模型配置 [^3] │ ├── pytorch_model.bin # 模型权重 │ └── tokenizer.json # 分词器 ├── core/ │ ├── loader.py # 模型加载 (核心逻辑1) │ └── inference.py # 生成逻辑 (核心逻辑2) └── service/ └── api_server.py # API封装 (核心逻辑3) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值