论文阅读——CRNet: Channel-Enhanced Remodeling-Based Network for Salient Object Detection in Optical

本文介绍了一种名为CRNet的网络,针对遥感显著性检测中的小目标问题和复杂背景干扰进行了改进。通过通道增强模块和重构特征模块优化浅层和深层特征,使用BCE+IOU损失函数进行训练,有效提升了小目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么要看这篇

这篇是老师发的,主要是用来解决遥感显著性检测的边缘问题

基本信息

期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
年份2023
论文地址https://ieeexplore.ieee.org/abstract/document/10217013
代码地址https://github.com/hilitteq/CRNet.git

标题

CRNet:一种基于网格增强重构的光学遥感图像显著目标检测网络

目前存在的问题

  1. 除了它们的尺寸差异之外,这些目标由于拍摄距离而具有不同的目标尺度大小
  2. 小物体在整个图像中占较少的像素,使得在网络训练期间更难以学习。而且,网络模型在学习ORSIs的过程中面向大对象,而小对象容易被忽略,导致检测效果不佳
  3. ORSIs覆盖的视场范围大,背景信息复杂多样,对显著目标的检测会产生很强的干扰

改进

  1. 对于浅层特征,我们创建了一个通道增强模块(CEM),该模块结合了通道注意(CA)机制和局部通道交互。这个模块有助于建立边界细节,同时减少复杂背景和阴影的干扰
  2. 对于语义更丰富的深层特征,我们提出了重定义特征模块(redefined feature module, RFM),通过重构全局上下文语义信息来实现显著性目标的完整检测
  3. 解码器模块的融合过程以逐步恢复分辨率的方式推断出显著目标,结合定位和细节填充完成检测任务

网络结构

在这里插入图片描述

Feature-Enhanced Encoder(功能增强的编码器)
首先,我们将浅层特征f1和f2输入CEM。然后,通过CA机制和群卷积实现了去除冗余背景信息和精细表达前景细节的功能。最后生成信道增强特征F1和F2。对于深度特征f3 - f5,采用RFM进行特征结构变换。利用目标像素和通道之间的语义相关性,生成重构增强特征F3-F5

CEM(Channel Enhance Module)
浅层特征具有较高的空间分辨率,包含更详细的信息,有利于不同尺度下显著性目标的恢复,尤其是小目标。
在这里插入图片描述
RFM(Refined Feature Module)
同一物品的多个目标具有相同的视觉和语义特征。在识别出一种目标后,相似的语义关联有助于检测出同一类型的目标。构建不同空间区域之间的相关性有助于检测结构完整的目标,基于图的模型可以有效地推断上下文语义相关性。因此,我们可以通过图变换来增强像素之间的语义相关性,定位目标位置,聚合目标结构。
在这里插入图片描述
Progressive Fusion Decoder(渐进式融合解码器)
在这里插入图片描述

损失函数

BCE+IOU

训练

ORSSD,EORSSD,ORSI-4199,初始学习率5e-5,最小学习率5e-6,epoch为50

测试

ORSSD,EORSSD

我的总结

总的来说,浅层特征和深层特征走的路径不同

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醋酸洋红就是我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值