第一题:力扣198题
解题思路:
典型的动态规划问题,用模板就行,注意的是根据递推公式调整dp数组的初始化问题。具体详细过程参见代码注释。
代码如下:
class Solution {
public int rob(int[] nums) {
if(nums.length == 0) {
return 0;
}
if(nums.length == 1) {
return nums[0];
}
//dp数组
int[] dp = new int[nums.length];
//初始化,因为不能连续偷,所以dp[1]只能取前两个中最大的那一个
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
//遍历
for(int i = 2; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.length - 1];
}
}
打家劫舍升级版,就是把第一个家和最后一个家也连接起来了,参见力扣213题
解题思路:
针对这个问题,其实就是多考虑了一下首尾,那这么想?我如果首和尾只考虑一个,最后包含首或者包含尾中的数哪个大我就取哪个,这不就完事了嘛。详见代码。
代码如下:
class Solution {
public int rob(int[] nums) {
if(nums.length == 0) {
return 0;
}
if(nums.length == 1) {
return nums[0];
}
//case1: 不考虑最后一个
//case2: 不考虑第一个
return Math.max(robCase(nums, 0, nums.length - 2), robCase(nums, 1, nums.length - 1));
}
private int robCase(int[] nums, int start, int end) {
if(start == end) {
return nums[start];
}
//初始化dp数组
int[] dp = new int[nums.length];
dp[start] = nums[start];
dp[start + 1] = Math.max(nums[start + 1], nums[start]);
for(int i = start + 2; i <= end; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[end];
}
}
再次升级版,哎呀妈呀,这小偷的算法也太强了,哈哈哈!!!这年代不容易呀。
关注一下这个题:力扣337题
解题思路:
真心想不出来,可以参考一下这个,写的很清楚,我觉得代码不是很难,难的是每个题的思路。
代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] res = robTree(root);
return Math.max(res[0], res[1]);
}
private int[] robTree(TreeNode root) {
//创建一个二维数组,用于存放[不偷,偷]的最大值
int[] res = new int[2];
//特判
if(root == null) {
return res;
}
//递归
int[] left = robTree(root.left);
int[] right = robTree(root.right);
//不偷当前节点,可以偷儿子节点
//儿子节点包括 左儿子 和 右儿子, 左儿子又有偷不偷这么一说,同理,右儿子也是
res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
//偷当前节点,那就不能偷儿子节点了
res[1] = root.val + left[0] + right[0];
return res;
}
}
第二题:力扣121题
我去,发现个问题唉,做算法题难道会上瘾嘛???
为什么做完有些算法题还想再做下一道???呜呜呜,学坏了
解题思路:
先搞清楚dp数组表示什么含义,这样才能更好的解题。
dp[i][0] 表示 第 i 天 持有 股票
dp[i][1] 表示 第 i 天 不持有 股票
不断更新dp数组就ok!!!
详见代码注解,很清晰
代码如下:
class Solution {
public int maxProfit(int[] prices) {
//动态规划解题
int[][] dp = new int[prices.length][2];
//初始化===> dp[i][0] 表示 第 i 天 持有 股票
// dp[i][1] 表示 第 i 天 不持有 股票
dp[0][0] = - prices[0];//表示第0天刚买入,所以收益为 - prices[0]
dp[0][1] = 0;//表示第0天不持有,说明没买
for(int i = 1; i < prices.length; i++) {
//第 i 天 持有 有两种情况===>1.第i天刚入手 2. i-1天就有了
dp[i][0] = Math.max(-prices[i], dp[i-1][0]);
//第 i 天 未持有 有两种情况===>1.第i天刚卖了 2. i-1天就没有了
dp[i][1] = Math.max(dp[i-1][0]+prices[i], dp[i-1][1]);
}
return dp[prices.length-1][1];
}
}
该题的升级版:力扣122题
解题思路:
与121基本一样,唯一不同的是:第i天持有有两种情况 1. i-1天就持有 2. 第i天刚入手
因为这个题是可以多次买入卖出的,所以 第i天刚入手就需要做出调整,因为i-1天可能已经有买入卖出操作了,还有利润存在,所以需要用i-1天的利润减去i天的价格。详见代码注释。
代码如下:
//动态规划
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++) {
//与121的区别===>第i天持有有两种情况 1. i-1天就持有 2. 第i天刚入手
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]-prices[i]);
//这种情况与121一致
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]+prices[i]);
}
return dp[prices.length-1][1];
}
}
再次升级题目:力扣123题
解题思路:
对比题目可以发现,与以上两个题不同点在于 该题要求 最多进行两次完整操作,也就是说最多买卖两次。观察一下,每天的状态一共有几种呢?一共五种状态:0.不操作 1.第一次买入 2.第一次卖出 3.第二次买入 4.第二次卖出。既然要用动态规划,就要有dp数组。来吧!
dp[i][j]表示第 i 天状态 j 所剩最大现金。其中 i 表示第 i 天,j为 [0 - 4] 五个状态,
我们分析一下:
dp[i][1]怎么来的?dp[i][1]表示第i天第一次买入,有两种情况吧!二者取最大值。
- 第i天没操作,维持i-1天的状态。dp[i][1] = dp[i-1][1]
- 第i天买入了。dp[i][1] = dp[i-1][0] - prices[i]
dp[i][2]怎么来的?dp[i][2]表示第i天第一次卖出,有两种情况吧!二者取最大值。
- 第i天卖出了。dp[i][2] = dp[i-1][1] + prices[i]
- 第i天没操作,维持i-1天的卖出的状态。dp[i][2] = dp[i-1][2]
dp[i][3]怎么来的?dp[i][3]表示第i天第二次买入,有两种情况吧!二者取最大值。
- 第i天买入了。dp[i][3] = dp[i-1][2] - prices[i]
- 第i天没操作,维持i-1天的买入的状态。dp[i][3] = dp[i-1][3]
dp[i][4]怎么来的?dp[i][4]表示第i天第二次卖出,有两种情况吧!二者取最大值。
- 第i天卖出了。dp[i][4] = dp[i-1][3] + prices[i]
- 第i天没操作,维持i-1天的卖出的状态。dp[i][4] = dp[i-1][4]
怎么样?是不是能撸代码了,肝!!!
代码如下:
class Solution {
public int maxProfit(int[] prices) {
//创建并初始化dp数组
int[][] dp = new int[prices.length][5];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1; i < prices.length; i++) {
dp[i][1] = Math.max(dp[i-1][0] - prices[i], dp[i-1][1]);
dp[i][2] = Math.max(dp[i-1][1] + prices[i], dp[i-1][2]);
dp[i][3] = Math.max(dp[i-1][2] - prices[i], dp[i-1][3]);
dp[i][4] = Math.max(dp[i-1][3] + prices[i], dp[i-1][4]);
}
return dp[prices.length-1][4];
}
}
再再次的升级,相当于对123题做了个总结,嘎嘎滴啊!力扣188题
解题思路:
参照123题,本题的k为2的时候,就是123题。
代码如下:
class Solution {
public int maxProfit(int k, int[] prices) {
if(prices.length == 0) {
return 0;
}
//初始化数组
int[][] dp = new int[prices.length][2*k+1];
//只需要给 奇数项 赋值为 -prices[0] 即可
for(int i = 1; i < 2*k; i += 2) {
dp[0][i] = -prices[0];
}
for(int i = 1; i < prices.length; i++) {
for(int j = 0; j < 2*k-1; j+=2) {
dp[i][j+1] = Math.max(dp[i-1][j] - prices[i], dp[i-1][j+1]);
dp[i][j+2] = Math.max(dp[i-1][j+1] + prices[i], dp[i-1][j+2]);
}
}
return dp[prices.length-1][2*k];
}
}
注意一点:我这里提交了两次,没注意这个题目中的prices数组可能为0,所以要加一个特判条件
if(prices.length == 0) {
return 0;
}
哇哦!!!升级升级再升级===>直接来看一下这个题,含有冷冻期的题目,即卖出后一天不能操作。 力扣309题
解题思路:
参照这个讲解,相当清晰。
**状态一:**买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
卖出股票状态,这里就有两种卖出股票状态
**状态二:**两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
**状态三:**今天卖出了股票
**状态四:**今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
j的状态为:
0:状态一
1:状态二
2:状态三
3:状态四
代码如下:
class Solution {
public int maxProfit(int[] prices) {
/*一共有四种状态
**状态一:**买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
卖出股票状态,这里就有两种卖出股票状态
**状态二:**两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
**状态三:**今天卖出了股票
**状态四:**今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
*/
int[][] dp = new int[prices.length][4];
//初始化,除了状态1之外,其余的状态全为0
dp[0][0] = -prices[0];
for(int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i-1][0], Math.max(dp[i-1][3]-prices[i],dp[i-1][1]-prices[i]));
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][3]);
dp[i][2] = dp[i-1][0]+prices[i];
dp[i][3] = dp[i-1][2];
}
return Math.max(Math.max(dp[prices.length-1][2], dp[prices.length-1][1]), dp[prices.length-1][3]);
}
}
在122题的基础上,还有一个有手续费的题目: 力扣714题
解题思路:
其实和122题的解法完全一致,只是递推公式上有一点点不同!
//第i天持有有两种情况 1. i-1天就持有 2. 第i天刚入手
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]-prices[i]);
//第i天未持有有两种情况 1. i-1天就未持有 2. 第i天刚卖了,此时就需要交个手续费
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]+prices[i]-fee);
代码如下:
class Solution {
//与122的区别===>多了个交易手续费
public int maxProfit(int[] prices, int fee) {
int[][] dp = new int[prices.length][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++) {
//第i天持有有两种情况 1. i-1天就持有 2. 第i天刚入手
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]-prices[i]);
//第i天未持有有两种情况 1. i-1天就未持有 2. 第i天刚卖了,此时就需要交个手续费
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]+prices[i]-fee);
}
return dp[prices.length-1][1];
}
}