随机过程考点速记

1. 预备知识

条件期望与方差的计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关系数

B X Y = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } B_{XY} = E\{[X- E(X)] [Y- E(Y)]\} BXY=E{[XE(X)][YE(Y)]}
在这里插入图片描述

n维正态分布的概率密度

f ( x 1 , x 2 , . . . , x n ) = ( 2 π ) − 1 2 ∣ C ∣ − 1 2 e x p { − 1 2 ( x − μ ) T C − 1 ( x − μ ) } f(x_1, x_2,...,x_n) = (2 \pi )^{-\frac{1}{2} } \left | C \right | ^{-\frac{1}{2} } exp\{-\frac{1}{2}(x-\mu )^TC^{-1}(x-\mu ) \} f(x1,x2,...,xn)=(2π)21C21exp{21(xμ)TC1(xμ)}
各 参 数 的 含 义 如 下 : C = ( c i j ) n ∗ n , c i j = C o v ( X i , X j ) μ = ( μ 1 , μ 2 , . . . . , μ n ) T 各参数的含义如下:\\ C = (c_{ij})_{n*n}, c_{ij}= Cov(X_i,X_j) \\ \mu = (\mu_1, \mu_2,...., \mu_n) ^T :C=(cij)nn,cij=Cov(Xi,Xj)μ=(μ1,μ2,....,μn)T

2 基本概念

习题1. 求随机过程X(t)的概率密度

设 随 机 变 量 Y 具 有 概 率 密 度 f ( y ) , 令 : X ( t ) = e Y t , t > 0 , Y > 0 求 随 机 过 程 X ( t ) 的 一 维 概 率 密 度 及 E X ( t ) , R x ( t 1 , t 2 ) 设随机变量Y具有概率密度f(y), 令: \\ X(t) = e^{Yt}, t > 0, Y > 0 \\ 求随机过程X(t)的一维概率密度及EX(t), Rx(t_1, t_2) Yf(y),:X(t)=eYt,t>0,Y>0X(t)EX(t),Rx(t1,t2)
( 1 ) f t ( x ) = f ( y ) ∣ y ′ ( x ) ∣ = f ( y ) / ∣ x ′ ( y ) ∣ = f ( − l n x t ) / ( t x ) ( 2 ) X ( t ) 的 均 值 函 数 和 相 关 函 数 分 别 为 : E X ( t ) = E ( e Y t ) = ∫ 0 ∞ f ( y ) e − y t d y R x ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] = ∫ 0 ∞ f ( y ) e − y ( t 1 + t 2 ) d y (1) f_t(x) = f(y)|y^{'}(x)| = f(y) / |x^{'}(y)| = f(- \frac{lnx}{t}) / (tx) \\ (2)X(t)的均值函数和相关函数分别为: \\ EX(t) = E(e^{Yt}) = \int_{0}^{\infty} f(y) e^{-yt} dy \\ Rx(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{0}^{\infty} f(y) e^{-y(t_1+ t_2)} dy (1)ft(x)=f(y)y(x)=f(y)/x(y)=f(tlnx)/(tx)(2)X(t):EX(t)=E(eYt)=0f(y)eytdyRx(t1,t2)=E[X(t1)X(t2)]=0f(y)ey(t1+t2)dy

习题2. 讨论随机过程的平稳性
  1. 如果随机过程 m x ( t ) m_x(t) mx(t) = 常数
  2. R x ( s , t ) = E [ X ( s ) X ( t ) ] = R x ( s − t ) R_x(s,t) = E[X(s) X(t)] = R_x(s-t) Rx(s,t)=E[X(s)X(t)]=Rx(st), 只和(s-t)有关
  3. {X(t)}是二阶矩过程
    由此可以推断出X(t) 是广义平稳过程
    设 随 机 过 程 X ( t ) = Y c o s ( θ t ) + Z s i n ( θ t ) Y , Z 服 从 标 准 正 态 分 布 , 所 以 m X ( t ) = 0 , R ( s , t ) = δ 2 c o n s [ ( t − s ) θ ] 设随机过程 \\ X(t) = Ycos(\theta t) + Zsin(\theta t) \\ Y, Z服从标准正态分布,所以\\ m_X(t) = 0, R(s,t) = \delta^2cons[(t-s)\theta] X(t)=Ycos(θt)+Zsin(θt)Y,Z,mX(t)=0,R(s,t)=δ2cons[(ts)θ]
    由此可以证明是广义的平稳过程
习题3 维纳过程及其相关函数
习题4 维纳过程的有限维密度函数

在这里插入图片描述

3. 泊松过程

泊松过程的数字特征

m x ( t ) = E [ X ( t ) ] = λ t R x ( s , t ) = λ s ( λ t + 1 ) B x ( s , t ) = λ m i n ( s , t ) 特 征 函 数 为 : g X ( u ) = E [ e i u X ( t ) ] = e λ t ( e i u − 1 ) m_x(t) = E[X(t)] = \lambda t \\ R_x(s,t) = \lambda s(\lambda t + 1) \\ B_x(s,t) = \lambda min(s,t) \\ 特征函数为: g_X(u) = E[e^{iuX(t)}] = e^{\lambda t(e^{iu - 1})} mx(t)=E[X(t)]=λtRx(s,t)=λs(λt+1)Bx(s,t)=λmin(s,t):gX(u)=E[eiuX(t)]=eλt(eiu1)

爱尔兰分布

f s n ( t ) = { λ e − λ t ( λ t ) n − 1 ( n − 1 ) ! , t ≥ 0 0 , t < 0 f_{s_{n}}(t)=\left\{\begin{array}{lr} \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1) !}, & t \geq 0 \\ 0, & t<0 \end{array}\right. fsn(t)={λeλt(n1)!(λt)n1,0,t0t<0
推导过程如下:
证 因 S n 是 事 件 A 第 n 次 出 现 的 时 刻 , 故 { S n ≤ t } = { N ( t ) ≥ n } = { ( 0 , t ) 内 A 至 少 出 现 n 次 } F S n ( t ) = P { S n ≤ t } = ∑ k = n ∞ ( λ t ) k k ! e − λ t , t ≥ 0 f S n ( t ) = F S n ′ ( t ) = ∑ k = n ∞ λ ( λ t ) k − 1 ( k − 1 ) ! e − λ t − ∑ k = n ∞ λ ( λ t ) k k ! e − λ t , = λ e − λ t ( λ t ) n − 1 ( n − 1 ) ! , t ≥ 0. 证 因 S_{n} 是事件 A 第 n 次出现的时刻, 故 \left\{S_{n} \leq t\right\}=\{N(t) \geq n\}=\{(0, t) 内 A 至少出现 n 次 \} \\ \begin{aligned} F_{S_{n}}(t) &=P\left\{S_{n} \leq t\right\}=\sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k !} e^{-\lambda t}, t \geq 0 \\ f_{S_{n}}(t) &=F_{S_{n}}^{\prime}(t)=\sum_{k=n}^{\infty} \frac{\lambda(\lambda t)^{k-1}}{(k-1) !} e^{-\lambda t}-\sum_{k=n}^{\infty} \lambda \frac{(\lambda t)^{k}}{k !} e^{-\lambda t}, \\ &=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1) !}, \quad t \geq 0 . \end{aligned} SnAn,{Snt}={N(t)n}={(0,t)An}FSn(t)fSn(t)=P{Snt}=k=nk!(λt)keλt,t0=FSn(t)=k=n(k1)!λ(λt)k1eλtk=nλk!(λt)keλt,=λeλt(n1)!(λt)n1,t0.

到达时间的条件分布

P { X 1 < = s ∣ N ( t ) = 1 } = s t 证 明 如 下 : P { X 1 ≤ s ∣ N ( t ) = 1 } = P { X 1 ≤ s , N ( t ) = 1 } P { N ( t ) = 1 } = P { N ( s ) = 1 , N ( t ) − N ( s ) = 0 } P { N ( t ) = 1 } = ( λ s ) e − λ s ⋅ e − λ ( t − s ) ( λ t ) e − λ t = s t P\{ X_1 <= s | N(t) = 1\}= \frac {s}{t} \\ 证明如下: \\ \begin{aligned} & P\left\{X_{1} \leq s \mid N(t)=1\right\}=\frac{P\left\{X_{1} \leq s, N(t)=1\right\}}{P\{N(t)=1\}} \\ =& \frac{P\{N(s)=1, N(t)-N(s)=0\}}{P\{N(t)=1\}} \\ =& \frac{(\lambda s) e^{-\lambda s} \cdot e^{-\lambda(t-s)}}{(\lambda t) e^{-\lambda t}}=\frac{s}{t} \end{aligned} P{X1<=sN(t)=1}=ts:==P{X1sN(t)=1}=P{N(t)=1}P{X1s,N(t)=1}P{N(t)=1}P{N(s)=1,N(t)N(s)=0}(λt)eλt(λs)eλseλ(ts)=ts

顺序统计量的概率密度

在这里插入图片描述

在这里插入图片描述

习题1. 独立变量的顺序统计量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

习题2. (非必要)
在这里插入图片描述

习题3. 电话呼叫问题

在这里插入图片描述
在这里插入图片描述

非时齐的的泊松过程计算

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

证明泊松过程是一个时间连续的马氏链

想要证明此命题, 首先需要的是证明 泊松过程的马氏性, 然后需要证明他的齐次性

在这里插入图片描述

证明泊松过程

在这里插入图片描述请添加图片描述

在这里插入图片描述

4. 离散的马尔科夫链

齐次马氏链

5. 连续时间的马尔可夫过程

例题1.M/M/1 排队系统

在这里插入图片描述

在 此 排 队 系 统 中 μ k = μ , λ k = λ 在此排队系统中 \mu_k = \mu, \lambda _k = \lambda μk=μ,λk=λ
∞ μ p i , i + 1 ( h ) = λ h + o ( h ) , p i , i − 1 ( h ) = μ h + o ( h ) , i = 1 , 2 , ⋯  同理可求得  p i j ( h ) = o ( h ) , ∣ i − j ∣ > 1 p i i ( h ) = 1 − λ i h − μ i h + o ( h ) ,  故  { X ( t ) , t ≥ 0 }  是生灭过程   其中  λ i = λ , i ≥ 0 μ i = μ i ≥ 1 \infty \mu \begin{array}{l} \boldsymbol{p}_{i, i+1}(\boldsymbol{h})=\lambda \boldsymbol{h}+\boldsymbol{o}(\boldsymbol{h}), \\ \boldsymbol{p}_{i, i-1}(\boldsymbol{h})=\mu \boldsymbol{h}+\boldsymbol{o}(\boldsymbol{h}), \boldsymbol{i}=\mathbf{1}, \mathbf{2}, \cdots \quad \text { 同理可求得 } \\ \boldsymbol{p}_{i j}(\boldsymbol{h})=\boldsymbol{o}(\boldsymbol{h}),|\boldsymbol{i}-\boldsymbol{j}|>\mathbf{1} \\ \boldsymbol{p}_{i i}(\boldsymbol{h})=\mathbf{1}-\lambda_{i} \boldsymbol{h}-\mu_{i} \boldsymbol{h}+\boldsymbol{o}(\boldsymbol{h}), \\ \text { 故 }\{\boldsymbol{X}(\boldsymbol{t}), \boldsymbol{t} \geq \mathbf{0}\} \text { 是生灭过程 } \\ \text { 其中 } \quad \lambda_{i}=\lambda, \quad \boldsymbol{i} \geq \mathbf{0} \\ \quad \mu_{i}=\mu \quad \boldsymbol{i} \geq \mathbf{1} \end{array} μpi,i+1(h)=λh+o(h),pi,i1(h)=μh+o(h),i=1,2, 同理可求得 pij(h)=o(h),ij>1pii(h)=1λihμih+o(h),  {X(t),t0} 是生灭过程  其中 λi=λ,i0μi=μi1
λ < μ \lambda < \mu λ<μ, 才会有平稳分布,并且平稳分布是:
p 0 = 1 − λ μ = 1 − ρ , ρ = λ μ , p n = ( λ μ ) n ( 1 − λ μ ) = ρ n ( 1 − ρ ) \begin{array}{l} p_{0}=1-\frac{\lambda}{\mu}=1-\rho, \rho=\frac{\lambda}{\mu}, \\ p_{n}=\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right)=\rho^{n}(1-\rho) \end{array} p0=1μλ=1ρ,ρ=μλ,pn=(μλ)n(1μλ)=ρn(1ρ)
P_n 服从1-p的几何分布,各个通项公式为:
{ p 0 = ( 1 + ∑ j = 1 ∞ λ 0 λ 1 … λ j − 1 μ 1 μ 2 … μ j ) − 1 p 1 = λ 0 μ 1 p 0 , p 2 = λ 0 λ 1 μ 1 μ 2 p 0 , ⋯ p k = λ 0 λ 1 … λ k − 1 μ 1 μ 2 … μ k p 0 \left\{\begin{array}{l} p_{0}=\left(1+\sum_{j=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{j-1}}{\mu_{1} \mu_{2} \ldots \mu_{j}}\right)^{-1} \\ p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{0}, p_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} p_{0, \cdots} \\ p_{k}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{k-1}}{\mu_{1} \mu_{2} \ldots \mu_{k}} p_{0} \end{array}\right. p0=(1+j=1μ1μ2μjλ0λ1λj1)1p1=μ1λ0p0,p2=μ1μ2λ0λ1p0,pk=μ1μ2μkλ0λ1λk1p0
1. 系统中顾客的平均数为:
L s = ∑ n = 0 ∞ n p n = ∑ n = 1 ∞ n ( λ μ ) n ( 1 − λ μ ) = λ μ − λ \boldsymbol{L}_{s}=\sum_{n=0}^{\infty} \boldsymbol{n} \boldsymbol{p}_{n}=\sum_{n=1}^{\infty} n\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right)=\frac{\lambda}{\mu-\lambda} Ls=n=0npn=n=1n(μλ)n(1μλ)=μλλ
2. 排队等候的顾客平均数为:
L Q = ∑ n = 1 ∞ ( n − 1 ) p n = ∑ n = 1 ∞ n p n − ∑ n = 1 ∞ p n = λ 2 μ ( μ − λ ) L_{Q}=\sum_{n=1}^{\infty}(n-1) p_{n}=\sum_{n=1}^{\infty} n p_{n}-\sum_{n=1}^{\infty} p_{n}=\frac{\lambda^{2}}{\mu(\mu-\lambda)} LQ=n=1(n1)pn=n=1npnn=1pn=μ(μλ)λ2
3. 顾客在系统中所花费的时间的平均数
W s = ∑ n = 0 ∞ E { 顾 客 A 在 系 统 中 花 费 的 时 间 ∣ 系 统 中 有 n 个 顾 客 } p n = ∑ n = 0 ∞ ( n + 1 ) 1 μ p n = 1 μ ∑ n = 0 ∞ n p n + 1 μ ∑ n = 0 ∞ p n = 1 μ − λ W_{s}=\sum_{n=0}^{\infty} E\{ 顾客 A 在系统中花费的时间|系统中有 n 个顾客 \} p_{n} \\ =\sum_{n=0}^{\infty}(n+1) \frac{1}{\mu} p_{n}=\frac{1}{\mu} \sum_{n=0}^{\infty} n p_{n}+\frac{1}{\mu} \sum_{n=0}^{\infty} p_{n}=\frac{1}{\mu-\lambda} Ws=n=0E{An}pn=n=0(n+1)μ1pn=μ1n=0npn+μ1n=0pn=μλ1

4. 顾客花在排队等候的时间平均值
W q = ∑ n = 0 ∞ E {  顾客  A  排队等候的时间  ∣  已经有  n  个顾客在系统中  } p n = ∑ n = 0 ∞ n μ p n = 1 μ ∑ n = 0 ∞ n p n = 1 μ λ μ − λ \begin{aligned} W_{q} &=\sum_{n=0}^{\infty} E\{\text { 顾客 } A \text { 排队等候的时间 } \mid \text { 已经有 } n \text { 个顾客在系统中 }\} p_{n} \\ &=\sum_{n=0}^{\infty} \frac{n}{\mu} p_{n}=\frac{1}{\mu} \sum_{n=0}^{\infty} n p_{n}=\frac{1}{\mu} \frac{\lambda}{\mu-\lambda} \end{aligned} Wq=n=0E{ 顾客 A 排队等候的时间  已经有 n 个顾客在系统中 }pn=n=0μnpn=μ1n=0npn=μ1μλλ

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例题2. Fokker-Planck(福克-普朗克)方程

{ p ′ ( t ) = − λ 0 p 0 ( t ) + μ 1 p 1 ( t ) p j ′ ( t ) = λ j − 1 p j − 1 ( t ) − ( λ j + μ j ) p j ( t ) + μ j + 1 p j + 1 p in  ( 0 ) = { 1 , n = i 0 , n ≠ i \left\{\begin{array}{l} p^{\prime}(t)=-\lambda_{0} p_{0}(t)+\mu_{1} p_{1}(t) \\ p_{j}^{\prime}(t)=\lambda_{j-1} p_{j-1}(t)-\left(\lambda_{j}+\mu_{j}\right) p_{j}(t)+\mu_{j+1} p_{j+1} \end{array}\right.\\ p_{\text {in }}(0)=\left\{\begin{array}{ll} 1, & n=i \\ 0, & n \neq i \end{array}\right. {p(t)=λ0p0(t)+μ1p1(t)pj(t)=λj1pj1(t)(λj+μj)pj(t)+μj+1pj+1pin (0)={1,0,n=in=i

例题二: 质点的随机游动

在这里插入图片描述
在这里插入图片描述

6. 平稳过程的谱密度

什么是平稳过程的谱密度

在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值