- 博客(17)
- 资源 (1)
- 收藏
- 关注
原创 常用LaTex符号
符号\sum∑\sum∑\int∫\int∫\iint∬\iint∬\iiint∭\iiint∭\leq≤\leq≤\geq≥\geq≥\in∈\in∈\sim∼\sim∼\approx≈\approx≈\simeq≃\simeq≃\neq≠\neq=\lVert∥\lVert∥\rVert∥\rVert∥\infty∞\infty∞\nabla∇\nabla∇\c...
2022-04-20 20:54:24 856
原创 2022年雷达领域学术会议时间节点
IET Radar 2022radar2022October 2022 | Scotland, UKFull paper submission deadline 18 April 2022Author notification 27 June 2022Final revised paper deadline 4 July 2022Author registration deadline 18 July 2022Theme C - Remote Sensing from Airborne
2021-12-15 15:07:30 5289 1
原创 先安装CUDA后安装VS的解决办法
把CUDA安装目录下的这个文件夹C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions里的四个文件复制到C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations下面就可以编译通过了...
2021-11-08 10:15:15 2834
原创 凸优化的基本概念
基本定义和概念广义定义:目标函数凸,约束凸一般优化问题:minf0(x),s.t.fi(x)≤0,i=1,⋯ ,M,hi(x)=0,i=1,⋯ ,P\min f_0(x),s.t.f_i(x)\leq 0,i=1,\cdots,M,h_i(x)=0,i=1,\cdots,Pminf0(x),s.t.fi(x)≤0,i=1,⋯,M,hi(x)=0,i=1,⋯,P优化变量(optimization variable):x:Rnx:R^nx:Rn,目标函数\损失函数(objective fu
2021-09-29 14:13:27 641
原创 贪婪算法(MP\OMP)
贪婪算法是一种搜索算法,基于局部的最优解,对于稀疏性较差或者存在噪声的信号重构性能较差。模型解决这样的一个问题:xxx为稀疏度为KKK的一个向量,观测矩阵为AAA,观测向量为bbb,同时伴有加性噪声nnn,即:b=Ax+nb=Ax+nb=Ax+n。期望从bbb中恢复xxx。也就是说在满足一定条件的情况下,用较少的观测值重构较长的信号。称AAA的列向量为原子(注意算法编写中应归一化)。收敛条件:通常是重构向量不再变化或者残差较小或者稀疏度满足要求。MP算法MP算法全称为matching pur
2021-09-02 13:11:35 2763
原创 矩阵论总结
第一章集合与映射集合映射线性空间基本知识基与坐标线性子空间矩阵的值域和零空间子空间的交与和线性变换基本知识特征值和特征向量Jordan标准型欧氏空间和酉空间欧氏空间基本知识度量矩阵矩阵合同正交Schmidt正交化(正交单位化):正交变换和正交矩阵第二章向量范数矩阵范数m范数从属范数矩阵范数和向量范数相容范数等价证明是范数矩阵可逆条件数谱半径第三章矩阵序列矩阵级数矩阵函数矩.
2021-06-18 17:13:47 1150
原创 构造任意旋转角度的矩阵
a,ba,ba,b是nnn维空间任意的两个线性无关的向量,请构造Span(a,b)Span(a,b)Span(a,b)上旋转任意角度α\alphaα的矩阵。方法一正交投影分解,xxx投到span(a,b)span(a,b)span(a,b)和它的补空间上,然后对投到span(a,b)span(a,b)span(a,b)的分量做旋转,再和补空间的分量加起来。方法二x1=a+bi,x2=a−biλ1=u+vi,λ2=u−viQ=λ1x1x1T+λ2x2x2Tx_1=a+bi,x_2=a-bi\\\
2021-04-18 19:48:15 1632 3
原创 拉格朗日乘数法
求解如下等式约束的最小二乘解{mincf(c)=∣∣y−Xc∣∣2cT1=1\left\{\begin{array}{ll}\min_cf(c)=||y-Xc||^2\\c^T\pmb{1}=1\end{array}\right.{mincf(c)=∣∣y−Xc∣∣2cT111=1解答:使用拉格朗日乘数法,记:L(c,λ)=∣∣y−Xc∣∣2−2λ(cT1−1)=(y−Xc)T(y−Xc)−2λ(cT1−1)=yTy−yTXc−cTXTy+cTXTXc−2λ(cT1−1)\begin{a
2021-04-18 19:44:51 1546 1
原创 计算任意矩阵的任意次方
思考题:如何计算如下矩阵的任意次方(2100021000210002)\begin{pmatrix}2&1&0&0\\0&2&1&0\\0&0&2&1\\0&0&0&2\end{pmatrix}⎝⎜⎜⎛2000120001200012⎠⎟⎟⎞思路:给出的例子是一个四阶的Jordan块,这是一个提示。我们知道任何方阵都相似于由Jordan阵构成的分块矩阵,也就是A=TJT−1A=TJT^{-1
2021-04-18 19:41:26 1394
原创 使用VSCode搭建LaTex编写环境
使用vscode搭建latex编写环境下载最新版的Tex Live并安装环境变量会自动添加在vscode上安装latex workshop插件在setting.json中添加以下代码,重新加载即可"latex-workshop.latex.tools": [ { "name": "latexmk", "command": "latexmk", "args": [ "-sync
2021-04-18 14:48:12 439
原创 随机过程的基本概念
随机过程基本概念随机过程:X(t,ω):T×Ω→RX(t,\omega):T\times \Omega \rightarrow RX(t,ω):T×Ω→R,简记为X(t)X(t)X(t)随机变量:X(t,⋅)X(t,\cdot)X(t,⋅)样本函数(也叫随机过程的一次实现):X(⋅,ω)X(\cdot,\omega)X(⋅,ω)状态空间:随机过程的所有可能取值的集合,其中的元素称为状态。数字特征均值函数:m(t)=E(X(t))m(t)=E(X(t))m(t)=E(X(t))方差函数:
2021-01-07 13:22:17 1783
原创 Markov过程
Markov过程基本概念markov性:下一状态只与当前状态有关。一步转移概率:pij(n)=P(X(n+1)=j∣X(n)=i),P(n)p_{ij}(n)=P(X(n+1)=j|X(n)=i),P(n)pij(n)=P(X(n+1)=j∣X(n)=i),P(n),注意pij(n)≥0p_{ij}(n)\geq0pij(n)≥0且对j求和是1。齐次马氏链:pij(n)=pij,P(n)=Pp_{ij}(n)=p_{ij},P(n)=Ppij(n)=pij,P(n)=P初始
2021-01-07 13:21:32 1853
原创 高斯过程
高斯过程例题X(t)X(t)X(t)正态过程,写出(X(t)X(t+τ)X′(t)X′(t+τ))(X(t)\quad X(t+\tau)\quad X^{'}(t)\quad X^{'}(t+\tau))(X(t)X(t+τ)X′(t)X′(t+τ))的协方差矩阵。(RXX(0)RXX(−τ)RXX′(0)RXX′(−τ)RXX(τ)RXX(0)RXX′(τ)RXX′(0)RX′X(0)RX′X(−τ)RX′X′(0)RX′X′(−τ)RX′X(τ)RX′X(0)RX′X′(τ)RX′X′(0))
2021-01-01 17:34:10 4538
原创 平稳过程的谱分析
平稳过程的谱分析确定性函数傅里叶变换F(ω)=∫−∞∞f(t)e−jωtdtF(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dtF(ω)=∫−∞∞f(t)e−jωtdtf(t)=12π∫−∞∞F(ω)ejωtdωf(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omegaf(t)=2π1∫−∞∞F(ω)ejωtdω信号做傅里叶变换需要满足两个条件:满足Dir
2021-01-01 16:05:44 706
原创 二阶矩过程、平稳过程和随机分析
二阶矩过程和平稳过程基本概念主要讨论复随机过程与宽平稳过程。二阶矩过程:对于∀t∈T\forall t\in T∀t∈T,均值和方差都存在。严平稳过程:概率分布完全一样,不涉及数字特征,可能不是二阶矩过程。宽平稳过程:均值函数是常数,自相关函数是时间差的函数。一定是二阶矩过程。对于正态过程来说,严平稳就是宽平稳。独立增量过程+均值为常数、存在二阶矩⇒\Rightarrow⇒正交增量过程注意两者区别:E([X(t2)−X(t1)][X(t4)−X(t3)])=E(X(t2)−X(t1))E
2020-12-31 23:41:36 6032 1
原创 Poisson过程
Poisson过程基本概念初值给定的独立增量过程是马氏过程。poisson过程是一计数过程,增量平稳且独立,增量满足参数为λt\lambda tλt的poisson分布。即P{N(s+t)−N(s)=k}=P{N(t)=k}=(λt)kk!e−λt,k=0,1,2,⋯P\{N(s+t)-N(s)=k\}=P\{N(t)=k\}=\frac{(\lambda t)^{k}}{k!}e^{-\lambda t},k=0,1,2,\cdotsP{N(s+t)−N(s)=k}=P{N(t)=k}=k!(
2020-12-31 19:06:08 3022 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人