C++ 并行编程

C++ 并行编程的方法有以下几种:

  1. 多线程编程:使用 C++11 标准中的 std::thread 类或 POSIX 线程库来创建多个线程,实现并行计算。

  2. OpenMP:OpenMP 是一种基于共享内存的并行编程模型,可以使用 C++ 编写并行程序。OpenMP 提供了一组指令和库函数,可以在程序中标记并行区域,让编译器自动将其转换为多线程代码。

  3. MPI:MPI 是一种基于消息传递的并行编程模型,可以在多台计算机之间进行并行计算。C++ 中可以使用 MPI 库来实现并行计算。

  4. CUDA:CUDA 是 NVIDIA 公司开发的一种并行计算平台,可以使用 C++ 编写 GPU 加速的并行程序。

  5. TBB:Intel 公司开发的 TBB(Threading Building Blocks)是一个 C++ 并行编程库,提供了一组高级的并行算法和数据结构,可以简化并行编程的复杂度。

  6. OpenCL:OpenCL 是一种跨平台的并行编程框架,可以使用 C++ 编写并行程序,支持多种硬件加速器,包括 CPU、GPU、FPGA 等。


  1. 多线程编程

多线程编程是一种常见的并行编程方法,可以使用 C++11 标准中的 std::thread 类或 POSIX 线程库来创建多个线程,实现并行计算。

示例代码:

#include <iostream>
#include <thread>

void hello() {
    std::cout << "Hello from thread " << std::this_thread::get_id() << std::endl;
}

int main() {
    std::thread t1(hello);
    std::thread t2(hello);

    t1.join();
    t2.join();

    return 0;
}
  1. OpenMP

OpenMP 是一种基于共享内存的并行编程模型,可以使用 C++ 编写并行程序。OpenMP 提供了一组指令和库函数,可以在程序中标记并行区域,让编译器自动将其转换为多线程代码。

示例代码:

#include <iostream>
#include <omp.h>

int main() {
    #pragma omp parallel
    {
        std::cout << "Hello from thread " << omp_get_thread_num() << std::endl;
    }

    return 0;
}
  1. MPI

MPI 是一种基于消息传递的并行编程模型,可以在多台计算机之间进行并行计算。C++ 中可以使用 MPI 库来实现并行计算。

示例代码:

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);

    int rank, size;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    std::cout << "Hello from process " << rank << " of " << size << std::endl;

    MPI_Finalize();

    return 0;
}
  1. CUDA

CUDA 是 NVIDIA 公司开发的一种并行计算平台,可以使用 C++ 编写 GPU 加速的并行程序。

示例代码:

#include <iostream>
#include <cuda_runtime.h>

__global__ void hello() {
    printf("Hello from thread %d of block %d\n", threadIdx.x, blockIdx.x);
}

int main() {
    hello<<<2, 4>>>();
    cudaDeviceSynchronize();

    return 0;
}
  1. TBB

TBB(Threading Building Blocks)是一个 C++ 并行编程库,提供了一组高级的并行算法和数据结构,可以简化并行编程的复杂度。

示例代码:

#include <iostream>
#include <tbb/parallel_for.h>

void hello(int i) {
    std::cout << "Hello from thread " << i << std::endl;
}

int main() {
    tbb::parallel_for(0, 4, [](int i) {
        hello(i);
    });

    return 0;
}
  1. OpenCL

OpenCL 是一种跨平台的并行编程框架,可以使用 C++ 编写并行程序,支持多种硬件加速器,包括 CPU、GPU、FPGA 等。

示例代码:

#include <iostream>
#include <CL/cl.hpp>

int main() {
    std::vector<cl::Platform> platforms;
    cl::Platform::get(&platforms);

    cl::Context context;
    std::vector<cl::Device> devices;
    for (auto platform : platforms) {
        std::vector<cl::Device> platform_devices;
        platform.getDevices(CL_DEVICE_TYPE_ALL, &platform_devices);
        devices.insert(devices.end(), platform_devices.begin(), platform_devices.end());
    }
    context = cl::Context(devices);

    cl::Program::Sources sources;
    std::string kernel_code = "__kernel void hello() { printf(\"Hello from thread %d\\n\", get_global_id(0)); }";
    sources.push_back({kernel_code.c_str(), kernel_code.length()});

    cl::Program program(context, sources);
    program.build(devices);

    cl::CommandQueue queue(context, devices[0]);

    cl::Kernel kernel(program, "hello");
    queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(4), cl::NullRange);

    queue.finish();

    return 0;
}
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值