LoRA原理及示例

LoRA(Low-Rank Adaptation)是一种参数高效微调方法,旨在通过低秩分解来减少模型微调时的参数量,从而降低计算资源和存储需求。LoRA 通过在预训练模型的权重矩阵上加入低秩矩阵来实现微调,这种方法在处理大规模预训练模型时特别有效。以下是对 LoRA 方法的详细讲解:

核心理念

LoRA 的核心思想是将预训练模型的某些权重矩阵分解为两个低秩矩阵的乘积,然后仅微调这些低秩矩阵。具体来说,假设 W 是预训练模型中的一个权重矩阵,LoRA 方法对 𝑊 进行如下分解:

W+ΔW=W+AB
其中, A 和 B 是低秩矩阵,秩 r 通常远小于 𝑊的维度。微调过程中,预训练模型的原有参数 𝑊 保持不变,只更新低秩矩阵 𝐴和𝐵

步骤

1.初始化低秩矩阵:在预训练模型的每个需要微调的权重矩阵 W 上初始化两个低秩矩阵 A 和
𝐵。通常, 𝐴和 B的初始值是随机的,且其秩 r 远小于 W 的维度。
2. 冻结原有参数:预训练模型的原有参数 W 冻结不变,确保在微调过程中不被更新。
3. 训练低秩矩阵:在特定任务数据集上训练低秩矩阵 A 和 B,通过优化目标任务的损失函数来调整 A 和 B 的参数。
4. 组合参数:在前向传播过程中,将更新后的低秩矩阵 𝐴 和 B 与原始权重矩阵 W 组合,以 W+AB 的形式参与计算。
5. 评估和调整:使用验证集评估模型性能,根据需要调整低秩矩阵的秩 𝑟 和其他超参数。

优势

  1. 减少参数量:通过低秩分解,大幅减少了需要微调的参数量,从而降低计算和存储成本。
  2. 保持预训练知识:由于原有参数 𝑊保持不变,模型能够保留预训练时学到的知识,同时适应新任务。
  3. 适用于大规模模型:LoRA 特别适用于大规模预训练模型,如 GPT、BERT 等,使得在资源有限的情况下也能进行有效微调。
    示例代码
    以下是一个使用 LoRA 方法对预训练模型进行微调的简单示例(使用 PyTorch):
 import torch
import torch.nn as nn
import torch.optim as optim

class LoRA(nn.Module):
    def __init__(self, original_model, layer_name, rank=4):
        super(LoRA, self).__init__()
        self.original_model = original_model
        self.rank = rank
        self.lora_params = []

        # 获取需要微调的层
        self.layer = dict([*self.original_model.named_modules()])[layer_name]

        # 初始化低秩矩阵 A 和 B
        A = nn.Parameter(torch.randn(self.layer.weight.size(0), rank))
        B = nn.Parameter(torch.randn(rank, self.layer.weight.size(1)))
        self.lora_params.append((A, B))
        self.register_parameter(f"{layer_name}_A", A)
        self.register_parameter(f"{layer_name}_B", B)

    def forward(self, x):
        for A, B in self.lora_params:
            delta_W = torch.matmul(A, B)
            self.layer.weight.data += delta_W  # 加入微调后的增量
        return self.original_model(x)

# 定义一个简单的全连接层模型作为示例
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 2)

    def forward(self, x):
        return self.fc(x)

# 初始化模型和 LoRA
original_model = SimpleModel()
layer_name = 'fc'
lora_model = LoRA(original_model, layer_name, rank=4)

# 冻结原有模型参数
for param in original_model.parameters():
    param.requires_grad = False

# 只训练 LoRA 的参数
optimizer = optim.Adam(lora_model.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()

# 生成一些假数据用于训练
num_epochs = 5
dataloader = [(torch.randn(32, 10), torch.randint(0, 2, (32,))) for _ in range(100)]

# 训练 LoRA 模型
for epoch in range(num_epochs):
    for data, labels in dataloader:
        optimizer.zero_grad()
        outputs = lora_model(data)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    print(f"Epoch {epoch+1}, Loss: {loss.item()}")

# 检查权重变化
print("Original weight: ", original_model.fc.weight)
print("LoRA modified weight: ", lora_model.layer.weight)


总结

LoRA 方法通过低秩分解减少微调参数量,降低计算和存储成本,并在保持预训练知识的同时适应新任务。这使其成为大规模预训练模型微调中的一种高效方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值