微积分、线性代数、概率论,这里有份超详细的ML数学路线图

这篇博客探讨了机器学习算法与微积分、线性代数和概率论的紧密联系。理解这些数学概念对于优化模型和提升性能至关重要。微积分中的导数在神经网络训练中起到关键作用,而线性代数中的矩阵运算和特征值在神经网络的构建和分析中不可或缺。同时,概率论为机器学习提供了基础的概率模型和信息论概念。博客提供了丰富的学习资源,帮助读者深入学习这些数学理论。
摘要由CSDN通过智能技术生成


大学时期学的数学现在可能派上用场了,机器学习背后的原理涉及许多数学知识。深入挖掘一下,你会发现,线性代数、微积分和概率论等都和机器学习背后的算法息息相关。

 

机器学习算法背后的数学知识你了解吗?在构建模型的过程中,如果想超越其基准性能,那么熟悉基本细节可能会大有帮助,尤其是在想要打破 SOTA 性能时,尤其如此。

机器学习背后的原理往往涉及高等数学。例如,随机梯度下降算法建立在多变量微积分和概率论的基础上。因此掌握基础的数学理论对于理解机器学习模型很重要。但如果你是没有数学基础的初学者,这里有一份学习路线图,带你从零开始深入理解神经网络的数学原理。

大多数机器学习都建立在三种数学理论的基础上:线性代数、微积分和概率论,其中概率论的理论又基于线性代数和微积分。

微积分

微积分包括函数的微分和积分。神经网络本质上是一个可微函数,因此微积分是训练神经网络的基本工具。

首先,函数的导数定义如下

在极限定理中,这也是点 x 处切线的斜率。下图说明了这个概念:

 

将函数的导数可视化。

微分可以用来优化函数:导数在局部极大值和极小值处为零。(也有例外,例如:f(x) = x³,x=0),导数为零的点称为临界点。临界点是最小值还是最大值可以通过查看二阶导数来确定:

求导存在一些基本法则,其中最重要的可能是链式求导法则:

上式告诉我们如何计算复合函数的导数。

微分和积分互为逆运算,这是因为:

它适用于任何可积函数 f(x)。函数的积分也可以看作是曲线下的有符号面积。例如:

因为当函数是负的时候,这里的面积也有一个负号:

 

在 -π到π的区间内,正弦函数曲线下的有符号面积。

推荐一些比较好的学习资源,麻省理工学院的单变量微积分课程和 Gilbert Strang 的教科书。

  • MIT 课程链接:https://www.youtube.com/playlist?list=PL590CCC2BC5AF3BC1

  • 教科书链接:https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/

 

线性代数

神经网络本质上是函数,它是用微积分工具训练的。然而,又涉及线性代数,如矩阵乘法。线性代数是一门涉及机器学习许多方面的庞大学科,因此这将是一个重要的部分。

向量空间

为了更好地理解线性代数,建议从向量空间开始。首先介绍一个特例,把平面上的每个点看作一个元组:

这些本质上是从零指向(x₁,x2)的向量。向量之间可以相加,向量也可与标量相乘:

这是向量空间的原型模型。一般来说,如果可以将向量相加并将向量与实数相乘,那么这组向量 V 就是实数上的向量空间,那么以下属性成立:

 

这些保证了向量可以相加和缩放。当考虑向量空间时,如果你在心里把它们建模为 R^2 会很有帮助。

范数空间

如果你很了解向量空间,下一步就是理解怎样测量向量的大小。在默认情况下,向量空间本身并没有提供这样的工具。但我们有:

 

这是一种特殊的范数,通常,如果存在函数,则向量空间 V 是范数的:

 

范数为:

但这是一个简单而基本的概念,有很多范数存在,但最重要的是 p 范数家族:

当 p=2 时,我们得到上述特例以及最高范数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值