【密码学五】数字签名、RSA实现数字签名和验证

本文介绍了消息认证码(MAC)和数字签名的概念及其在网络安全中的应用。MAC用于验证消息完整性和发送者身份,但无法防止否认。数字签名通过非对称加密解决了否认问题,提供消息完整性和认证的同时,还具备不可否认性。文中还展示了如何使用RSA算法进行数字签名的生成和验证。
摘要由CSDN通过智能技术生成

消息认证码&数字签名

消息认证码(message authentication code)是一种确认完整性并进行认证的技术,取三个单词的首字母,简称为MAC。

消息认证码的输入包括任意长度的消息和一个发送者与接收者之间共享的密钥,它可以输出固定长度的数据,这个数据称为MAC值

根据任意长度的消息输出固定长度的数据,这一点和单向散列函数很类似。但是单向散列函数中计算散列值时不需要密钥,而消息认证码中则需要使用发送者与接收者之间共享的密钥。

要计算MAC必须持有共享密钥,没有共享密钥的人就无法计算MAC值,消息认证码正是利用这一性质来完成认证的。此外,和单向散列函数的散列值一样,哪怕消息中发生1比特的变化,MAC值也会产生变化,消息认证码正是利用这一性质来确认完整性的。

消息认证码有很多种实现方法,大家可以暂且这样理解:消息认证码是一种与密钥相关联的单向散列函数。

Alice 和 Bob 的故事

像以前一样,我们还是从一个Alice和Bob的故事开始讲起。不过,这一次Alice和Bob分别是两家银行,Alice银行通过网络向Bob银行发送了一条汇款请求,Bob银行收到的请求内容是:

从 账 户 A − 5374 向 账 户 B − 6671 汇 款 1000 万 元 从账户A-5374 向账户B-6671汇款1000万元 A5374B66711000

当然,Bob银行所收到的汇款请求内容必须与Alice银行所发送的内容是完全一致的。如果主动攻击者Mallory在中途将Alice银行发送的汇款请求进行了篡改,那么Bob银行就必须要能够识别出这种篡改,否则如果Mallory将收款账户改成了自己的账户,那么1000万元就会被盗走。

话说回来,这条汇款请求到底是不是Alice银行发送的呢?有可能Alice银行根本就没有发送过汇款请求,而是由主动攻击者Mallory伪装成Alice银行发送的。如果汇款请求不是来自Alice银行,那么就绝对不能执行汇款。

现在我们需要关注的问题是汇款请求(消息)的 “完整性" 和 “认证" 这两个性质。

消息的完整性(integrity), 指的是:消息没有被篡改"这一性质,完整性也叫一致性。如果能够确认汇款请求的内容与Alice银行所发出的内容完全一致,就相当于是确认了消息的完整性,也就意味着消息没有被篡改。

消息的认证(authentication)指的是“消息来自正确的发送者"这一性质。如果能够确认汇款请求确实来自Alice银行,就相当于对消息进行了认证,也就意味着消息不是其他人伪装成发送者所发出的。

通过使用本章中要介绍的消息认证码,我们就可以同时识别出篡改和伪装,也就是既可以确认消息的完整性,也可以进行认证。


数字签名是一种将相当于现实世界中的盖章、签字的功能在计算机世界中进行实现的技术。使用数字签名可以识别篡改和伪装,还可以防止否认。

从消息认证到数字签名

  • 消息认证码的局限性

    消息认证码,我们可以识别消息是否被篡改或者发送者身份是否被伪装,也就是可以校验消息的完整性,还可以对消息进行认证。然而,比如在出具借条的场景中却无法使用消息认证码,因为消息认证码无法防止否认。

    消息认证码之所以无法防止否认,是因为消息认证码需要在发送者Alice和接收者Bob两者之间共享同一个密钥。正是因为密钥是共享的,所以能够使用消息认证码计算出正确MAC值的并不只有发送者Alice,接收者Bob也可以计算出正确的MAC值。由于Alice和Bob双方都能够计算出正确的MAC值,因此对于第三方来说,我们无法证明这条消息的确是由Alice生成的。

  • 通过数字签名解决问题

    下面请大家开动一下脑筋。假设发送者Alice和接收者Bob不需要共享一个密钥,也就是说,Alice和Bob各自使用不同的密钥。

    我们假设Alice使用的密钥是一个只有Alice自己才知道的私钥。当Alice发送消息时,她用私钥生成一个“签名"。相对地,接收者Bob则使用一个和Alice不同的密钥对签名进行验证。使用Bob的密钥无法根据消息生成签名,但是用Bob的密钥却可以对Alice所计算的签名进行验证,也就是说可以知道这个签名是否是通过Alice的密钥计算出来的。如果真有这么一种方法的话,那么不管是识别篡改、伪装还是防止否认就都可以实现了吧 ?

    实际上,这种看似很神奇的技术早就已经问世了,这就是数字签名(digital signature)。

    签名的生成和验证

    让我们来稍微整理一下。

    在数字签名技术中,出现了下面两种行为:

    • 生成消息签名的行为
    • 验证消息签名的行为

    生成消息签名这一行为是由消息的发送者Alice来完成的,也称为“对消息签名”。生成签名就是根据消息内容计算数字签名的值,这个行为意味着 “我认可该消息的内容"。

    验证数字签名这一行为一般是由消息的接收者Bob来完成的,但也可以由需要验证消息的第三方来完成,这里的第三方我们暂且将其命名为验证者Victor。验证签名就是检查该消息的签名是否真的属于Alice,验证的结果可以是成功或者失败,成功就意味着这个签名是属于Alice的,失败则意味着这个签名不是属于Alice的。

    在数字签名中,生成签名和验证签名这两个行为需要使用各自专用的密钥来完成。

    Alice使用“签名密钥"来生成消息的签名,而Bob和Victor则使用“验证密钥"来验证消息的签名。数字签名对签名密钥和验证密钥进行了区分,使用验证密钥是无法生成签名的。这一点非常重要。此外,签名密钥只能由签名的人持有,而验证密钥则是任何需要验证签名的人都可以持有

通过RSA实现数字签名

前边章节已经介绍过了如何通过自己编写的go代码生成非对称加密算法RSA的公钥和私钥文件, 假设公钥文件的文件名为 public.pem,私钥文件对应的文件名为 private.pem

生成数字签名
// SignatureRSA
// myData 要签名的数据
func SignatureRSA(myData []byte) ([]byte, error) {
	// 1. 从秘钥文件中读生成的秘钥内容
	fp, err := os.Open("private.pem")
	if err != nil {
		return nil, errors.New("打开私钥文件 - private.pem 失败")
	}
	// 2. 读文件内容
	fileInfo, _ := fp.Stat()
	all := make([]byte, fileInfo.Size())
	_, err = fp.Read(all)
	if err != nil {
		return nil, errors.New("读文件内容失败")
	}
	fmt.Println("文件内容: ", string(all))
	// 3. 关闭文件
	defer fp.Close()
	// 4. 将数据解析成pem格式的数据块
	block, _ := pem.Decode(all)
	// 5. 解析pem数据块, 得到私钥
	privKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
	if err != nil {
		return nil, errors.New("解析私钥失败")
	}

	// 6. 将数据通过哈希函数生成信息摘要
	myHash := sha256.New()
	myHash.Write(myData)
	result := myHash.Sum(nil)
	// 7. 生成签名
	mySignature, err := rsa.SignPKCS1v15(rand.Reader, privKey, crypto.SHA256, result)
	if err != nil {
		return nil, errors.New("生成签名失败")
	}

	return mySignature, nil
}
验证数字签名
// VerifyRSA
// src 签名数据
// myData 元数据
func VerifyRSA(src, myData []byte) error {
	// 1. 从秘钥文件中读生成的秘钥内容
	fp, err := os.Open("public.pem")
	if err != nil {
		return errors.New("打开公钥文件 - public.pem 失败")
	}
	// 2. 读文件内容
	fileInfo, _ := fp.Stat()
	all := make([]byte, fileInfo.Size())
	num, err := fp.Read(all)
	if err != nil {
		return errors.New("读文件内容失败")
	}
	fmt.Println("文件大小: ", num)
	// 3. 关闭文件
	defer fp.Close()
	// 4. 将公钥数据解析为pem格式的数据块
	block, _ := pem.Decode(all)
	// 5. 将公钥从pem数据块中提取出来
	pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
	if err != nil {
		return errors.New("解析公钥失败")
	}
	// 6. 公钥接口转换为公钥对象
	pubKey := pubInterface.(*rsa.PublicKey)
	// 7. 将数据通过哈希函数生成信息摘要
	myHash := sha256.New()
	myHash.Write(myData)
	result := myHash.Sum(nil)

	// 7. 数据认证
	err = rsa.VerifyPKCS1v15(pubKey, crypto.SHA256, result, src)
	if err != nil {
		return err
	}

	fmt.Println("数字签名验证成功, 恭喜o(* ̄︶ ̄*)o恭喜")
	return nil
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我:yueda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值