隐私计算
文章平均质量分 94
介绍隐私计算相关知识
林立可
加点油呢!路还有那么长!
展开
-
隐私计算概念及应用介绍
隐私计算概念及应用介绍隐私计算的核心理念是:**”数据可用不可见,数据不动模型动。“**通过隐私计算技术,打通数据孤岛,释放数据价值,为政府,企业,个人带来便利。按照目前的市场技术,隐私计算技术主要有三个方向:联邦学习,安全多方计算和可信计算。(差分隐私作为一种数据处理方式也纳入其中)1,联邦学习联邦学习是一种分布式机器学习技术和系统,包括两个或多个参与方,这些参与方通过安全的算法协议进行联合机器学习,可以在各方数据不出本地的情况下,通过交换中间数据的形式,联合建模和提供模型推理与预测服务。而且这原创 2021-04-24 20:54:53 · 45460 阅读 · 4 评论 -
联邦学习概念及应用
联邦学习0,联邦学习概念联邦学习是使得多方在不共享本地数据的前提下,进行多方协同训练的机器学习方式。因此,他在实现功能的同时,能够很好的保护数据隐私。目前联邦学习支持的算法:SecureBoost,线性回归,逻辑回归,神经网络算法等。1,特点数据绝对掌握:每一个参与方数据都不离开本地,模型信息在各参与方之间以加密的形式传输,且保证不能由模型推测出原始数据;参与方不稳定:不同参与方在计算能力、通信稳定性方面存在差异,导致联邦学习相对于分布式机器学习存在不稳定情况;通信代价高:参与方不稳定造成通信代原创 2021-04-08 16:13:14 · 3121 阅读 · 0 评论