神经网络基础
在机器学习中,线性回归和逻辑回归用来处理相关问题很简单,当我们的数据集如下时:
例如一个房屋有很多的特征时,特征点有多个,算出如上的逻辑回归,此时函数很复杂,所以这不是一个好办法。
于是,我们使用神经网络算法可以来实现这个大量的特征算法:
神经元:
它有输入神经,输出神经,简而言之,神经元是一个计算的东西,它通过用户输入,然后输出,传递到其他节点,所以计算过程如下:
神经网络如下:
输入特征项:x1,x2,x3,最后h(x)为输出。
layer2为隐藏层,这里面的值我们不知道。所有输出层和输入层都是隐藏层。
上述的神经元,计算过程如下:
每个输入值,在一个节点中,有不同的权值,根据不同的权值来计算输出。
其中为矩阵相乘的相关知识,g为sigmode函数:
上述算法中,类似于矩阵相乘:
其中z⑶矩阵z⑶=[ z1⑶]。
可以看出,神经网络如同逻辑回归,只是神经网络增加了隐藏层,使得我们的传递数据有所改变,当隐藏层变多时,我们得数据变化也不同,让其自己训练特征值。
例如:
每个x分配了权值,θ,上述θ分别为-30,20,20,这个小神经元计算原理如上,
我们将其计算出来:
所以,h(x)得值如上,所以,通过上述逻辑,可以理解,这个逻辑运算,其中最重要的我们需要确定权值。
那我们如何训练数据呢?
通过蓝色圈圈,输入数据,经过两个隐藏层,自动计算其中的权值,然后在在输出层输出,最后输出为一个矩阵,四维向量。
大致神经网络基础就是这些。后面会了解深度神经网络算法。
如有错误可以联系我:626529441,一起交流学习,谢谢。