目录
(1)按键分区(Keyed)和非按键分区(Non-Keyed)
*2)全窗口函数(full window functions)
2.按键分区处理函数(KeyedProcessFunction)
(1)定时器(Timer)和定时服务(TimerService)
(1)方法一:ProcessAllWindowFunction
一、窗口
在批处理统计中,我们可以等待一批数据都到齐后,统一处理。但是在实时处理统计中,我们是来一条就得处理一条,那么我们怎么统计最近一段时间内的数据呢?引入“窗口”。
1.窗口的概念
Flink是一种流式计算引擎,主要是来处理无界数据流的,数据源源不断、无穷无尽。想要更加方便高效地处理无界流,一种方式就是将无限数据切割成有限的“数据块”进行处理,这就是所谓的“窗口”(Window)。
Flink中窗口并不是静态准备好的,而是动态创建——当有落在这个窗口区间范围的数据达到时,才创建对应的窗口。
到达窗口结束时间时,窗口就触发计算并关闭,事实上“触发计算”和“窗口关闭”两个行为也可以分开。
2.窗口的分类
(1)按照驱动类型分
*1)时间窗口
一定时间作为一个窗口
*2)计数窗口
达到多少数量作为一个窗口
(2)按照窗口分配数据的规则分类
*1)滚动窗口
以一个固定时间为窗口,第一个窗口结束的时间就是下一个窗口开始的时间。
*2)滑动窗口
窗口大小 + 步长。
如果步长 = 窗口大小,其实就是滚动窗口的情况。
步长 > 窗口大小,会有数据被漏掉。
步长 < 窗口大小,窗口会有重叠
*3)会话窗口
基于会话对数据分组
*4)全局窗口
全局有效,没有结束时间
3.窗口api概览
(1)按键分区(Keyed)和非按键分区(Non-Keyed)
定义窗口前,需要确认数据流是基于keyBy还是没有keyBy的。
*1)按键分区窗口(Keyed Windows)
经过按键分区keyBy操作后,数据流会按照key被分为多条逻辑流,窗口计算会在多个并行子任务上同时执行。相同key的数据会被发送到同一个并行子任务,而窗口操作会基于每个key进行单独的处理。
stream.keyBy(...).window(...)
*2)非按键分区(Non-Keyed Windows)
窗口逻辑只能在一个任务(task)上执行,就相当于并行度变成了1。
对于非按键分区的窗口操作,手动调大窗口算子的并行度也是无效的,windowAll本身就是一个非并行的操作。
stream.windowAll(...)
(2)代码中窗口API的调用
窗口操作主要有两个部分:窗口分配器(Window Assigners)和窗口函数(Window Functions)。
stream.keyBy(<key selector>).window(<window assigner>).aggregate(<window function>)
.window()方法需要传入一个窗口分配器,它指明了窗口的类型。
.aggregate()方法传入一个窗口函数作为参数,它用来定义窗口具体的处理逻辑。
(3)窗口分配器
窗口分配器指定窗口的类型。窗口分配器最通用的定义方式,就是调用.window()方法。
(4)窗口函数
窗口函数定义了要对窗口中收集的数据做的计算操作,根据处理的方式可以分为两类:增量聚合函数和全窗口函数。
package com.atguigu.window;
import com.atguigu.bean.WaterSensor;
import com.atguigu.functions.WaterSensorMapFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
/**
* TODO
*
* @author cjp
* @version 1.0
*/
public class WindowApiDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());
KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());
// TODO 1. 指定 窗口分配器: 指定 用 哪一种窗口 --- 时间 or 计数? 滚动、滑动、会话?
// 1.1 没有keyby的窗口: 窗口内的 所有数据 进入同一个 子任务,并行度只能为1
// sensorDS.windowAll()
// 1.2 有keyby的窗口: 每个key上都定义了一组窗口,各自独立地进行统计计算
// 基于时间的
// sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10))) // 滚动窗口,窗口长度10s
// sensorKS.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(2))) // 滑动窗口,窗口长度10s,滑动步长2s
// sensorKS.window(ProcessingTimeSessionWindows.withGap(Time.seconds(5))) // 会话窗口,超时间隔5s
// sensorKS.window(GlobalWindows.create()) // 全局窗口,计数窗口的底层就是用的这个,需要自定义的时候才会用
// 基于计数的
// sensorKS.countWindow(5) // 滚动窗口,窗口长度=5个元素
// sensorKS.countWindow(5,2) // 滑动窗口,窗口长度=5个元素,滑动步长=2个元素
// TODO 2. 指定 窗口函数 : 窗口内数据的 计算逻辑
WindowedStream<WaterSensor, String, TimeWindow> sensorWS = sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));
// 增量聚合: 来一条数据,计算一条数据,窗口触发的时候输出计算结果
// sensorWS
// .reduce()
// .aggregate(, )
// 全窗口函数:数据来了不计算,存起来,窗口触发的时候,计算并输出结果
// sensorWS.process()
env.execute();
}
}
*1)增量聚合函数
^1)归约函数(ReduceFunction)
package com.atguigu.window;
import com.atguigu.bean.WaterSensor;
import com.atguigu.functions.WaterSensorMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
/**
* TODO
*
* @author cjp
* @version 1.0
*/
public class WindowReduceDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());
KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());
// 1. 窗口分配器
WindowedStream<WaterSensor, String, TimeWindow> sensorWS = sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));
// 2. 窗口函数: 增量聚合 Reduce
/**
* 窗口的reduce:
* 1、相同key的第一条数据来的时候,不会调用reduce方法
* 2、增量聚合: 来一条数据,就会计算一次,但是不会输出
* 3、在窗口触发的时候,才会输出窗口的最终计算结果
*/
SingleOutputStreamOperator<WaterSensor> reduce = sensorWS.reduce(
new ReduceFunction<WaterSensor>() {
@Override
public WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {
System.out.println("调用reduce方法,value1=" + value1 + ",value2=" + value2);
return new WaterSensor(value1.getId(), value2.getTs(), value1.getVc() + value2.getVc());
}
}
);
reduce.print();
env.execute();
}
}
^2)聚合函数(AggregateFunction)
ReduceFunction可以解决大多数归约聚合的问题,但是这个接口有一个限制,就是聚合状态的类型、输出结果的类型都必须和输入数据类型一样。
聚合函数可以解决这个问题:
package com.atguigu.window;
import com.atguigu.bean.WaterSensor;
import com.atguigu.functions.WaterSensorMapFunction;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
/**
* TODO
*
* @author cjp
* @version 1.0
*/
public class WindowAggregateDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());
KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());
// 1. 窗口分配器
WindowedStream<WaterSensor, String, TimeWindow> sensorWS = sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));
// 2. 窗口函数: 增量聚合 Aggregate
/**
* 1、属于本窗口的第一条数据来,创建窗口,创建累加器
* 2、增量聚合: 来一条计算一条, 调用一次add方法
* 3、窗口输出时调用一次getresult方法
* 4、输入、中间累加器、输出 类型可以不一样,非常灵活
*/
SingleOutputStreamOperator<String> aggregate = sensorWS.aggregate(
/**
* 第一个类型: 输入数据的类型
* 第二个类型: 累加器的类型,存储的中间计算结果的类型
* 第三个类型: 输出的类型
*/
new AggregateFunction<WaterSensor, Integer, String>() {
/**
* 创建累加器,初始化累加器
* @return
*/
@Override
public Integer createAccumulator() {
System.out.println("创建累加器");
return 0;
}
/**
* 聚合逻辑
* @param value
* @param accumulator
* @return
*/
@Override
public Integer add(WaterSensor value, Integer accumulator) {
System.out.println("调用add方法,value="+value);
return accumulator + value.getVc();
}
/**
* 获取最终结果,窗口触发时输出
* @param accumulator
* @return
*/
@Override
public String getResult(Integer accumulator) {
System.out.println("调用getResult方法");
return accumulator.toString();
}
@Override
public Integer merge(Integer a, Integer b) {
// 只有会话窗口才会用到
System.out.println("调用merge方法");
return null;
}
}
);
aggregate.print();
env.execute();
}
}
*2)全窗口函数(full window functions)
有些场景下,我们要做的计算必须基于全部的数据才有效,这时做增量聚合就没什么意义了;另外,输出的结果有可能要包含上下文中的一些信息(比如窗口的起始时间),这是增量聚合函数做不到的。
全窗口函数需要先收集窗口中的数据,并在内部缓存起来,等到窗口要输出结果的时候再取出数据进行计算。
package com.atguigu.window;
import com.atguigu.bean.WaterSensor;
import com.atguigu.functions.WaterSensorMapFunction;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
/**
* TODO
*
* @author cjp
* @version 1.0
*/
public class WindowProcessDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());
KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());
// 1. 窗口分配器
WindowedStream<WaterSensor, String, TimeWindow> sensorWS = sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));
// 老写法,不推荐
// sensorWS
// .apply(
// new WindowFunction<WaterSensor, String, String, TimeWindow>() {
// /**
// *
// * @param s 分组的key
// * @param window 窗口对象
// * @param input 存的数据
// * @param out 采集器
// * @throws Exception
// */
// @Override
// public void apply(String s, TimeWindow window, Iterable<WaterSensor> input, Collector<String> out) throws Exception {
//
// }
// }
// )
SingleOutputStreamOperator<String> process = sensorWS
.process(
/**
* 第一个参数:输入
* 第二个参数:输出
* 第三个参数:key
* 第四个参数:窗口类型
*/
new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {
/**
* 全窗口函数计算逻辑: 窗口触发时才会调用一次,统一计算窗口的所有数据
* @param s 分组的key
* @param context 上下文
* @param elements 存的数据
* @param out 采集器
* @throws Exception
*/
@Override
public void process(String s, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {
// 上下文可以拿到window对象,还有其他东西:侧输出流 等等
long startTs = context.window().getStart();
long endTs = context.window().getEnd();
String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");
long count = elements.spliterator().estimateSize();
out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());
}
}
);
process.print();
env.execute();
}
}
*3)增量聚合和全窗口函数的结合使用
package com.atguigu.window;
import com.atguigu.bean.WaterSensor;
import com.atguigu.functions.WaterSensorMapFunction;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
/**
* TODO
*
* @author cjp
* @version 1.0
*/
public class WindowAggregateAndProcessDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());
KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(sensor -> sensor.getId());
// 1. 窗口分配器
WindowedStream<WaterSensor, String, TimeWindow> sensorWS = sensorKS.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));
// 2. 窗口函数:
/**
* 增量聚合 Aggregate + 全窗口 process
* 1、增量聚合函数处理数据: 来一条计算一条
* 2、窗口触发时, 增量聚合的结果(只有一条) 传递给 全窗口函数
* 3、经过全窗口函数的处理包装后,输出
*
* 结合两者的优点:
* 1、增量聚合: 来一条计算一条,存储中间的计算结果,占用的空间少
* 2、全窗口函数: 可以通过 上下文 实现灵活的功能
*/
// sensorWS.reduce() //也可以传两个
SingleOutputStreamOperator<String> result = sensorWS.aggregate(
new MyAgg(),
new MyProcess()
);
result.print();
env.execute();
}
public static class MyAgg implements AggregateFunction<WaterSensor, Integer, String>{
@Override
public Integer createAccumulator() {
System.out.println("创建累加器");
return 0;
}
@Override
public Integer add(WaterSensor value, Integer accumulator) {
System.out.println("调用add方法,value="+value);
return accumulator + value.getVc();
}
@Override
public String getResult(Integer accumulator) {
System.out.println("调用getResult方法");
return accumulator.toString();
}
@Override
public Integer merge(Integer a, Integer b) {
System.out.println("调用merge方法");
return null;
}
}
// 全窗口函数的输入类型 = 增量聚合函数的输出类型
public static class MyProcess extends ProcessWindowFunction<String,String,String,TimeWindow>{
@Override
public void process(String s, Context context, Iterable<String> elements, Collector<String> out) throws Exception {
long startTs = context.window().getStart();
long endTs = context.window().getEnd();
String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");
long count = elements.spliterator().estimateSize();
out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());
}
}
}
(5)触发器(Trigger)
触发器主要是用来控制窗口什么时候触发计算。所谓的“触发计算”,本质上就是执行窗口函数,所以可以认为是计算得到结果并输出的过程。
窗口什么时候触发输出:当前窗口的最大时间戳 - 1ms
(6)移除器(Evictor)
移除器主要用来定义移除某些数据的逻辑。基于WindowedStream调用.evictor()方法,就可以