题目:
求给定两个字符串s1与s2的最大公共字符串。利用动态规划结合滚动数组求解。关键注释都在代码块中。
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;
int dp[2][10005], len1, len2;
string s1, s2;
/*
dp[i][j]记录s1前i个字符串和s2前j个字符串的最长公共子串,因此当i或j为0时,dp[i][j]为0
当第s1中第i个字符与s2中第j个字符相等时,他们的最长公共字串为dp[i-1][j-1]+1;
当s1中第i个字符与s2中第j个字符不相等时,他们的最长公共子串为dp[i][j-1]和dp[i-1][j]中的最大者,这个很好理解。
*/
/*
利用滚动数组优化空间复杂度,动态规划中,很多时候下一个状态的推出都和上几个状态相关,此时就可以使用滚动数组屏蔽掉多余的空间。
这是一种时间换空间的做法
*/
int main(){
while(cin >> s1 >> s2){
len1 = s1.length();
len2 = s2.length();
for(int i = 0;i <= len1;i++){
for(int j = 0;j <= len2;j++){
if(i == 0 || j == 0){
dp[i % 2][j] = 0;
continue;
}
if(s1[i-1] == s2[j-1]){
dp[i % 2][j] = dp[(i-1) % 2][j-1] + 1;
}else{
dp[i % 2][j] = max(dp[i % 2][j-1], dp[(i-1) % 2][j]);
}
}
}
printf("%d\n",dp[len1 % 2][len2]);
}
return 0;
}