python-random随机模块

本文介绍了Python的random模块,包括random.random()、randint()、uniform()等方法,用于生成随机浮点数、整数和序列。还讨论了shuffle()、sample()以及seed()、jumpahead()等功能,用于打乱序列、抽取样本和调整随机数生成器的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python的random模块提供了生成随机数和随机序列的功能。

方法总览

以下是 Python 随机模块 random 中的一些常见方法:

  • random():生成一个随机浮点数。
  • randint(a, b):生成一个 [a, b] 范围内的随机整数。
  • uniform(a, b):生成一个 [a, b] 范围内的随机浮点数。
  • randrange(start, stop[, step]):生成一个 [start, stop] 范围内的随机整数,步长为 step。
  • choice(seq):从序列 seq 中随机选择一个元素。
  • shuffle(seq):打乱序列 seq 的顺序。
  • randfloat():生成一个 0 到 1 之间的随机浮点数。
  • randstr(n):生成一个长度为 n 的随机字符串。
  • getstate():获取当前随机状态。
  • setstate(state):设置当前随机状态。
  • jumpahead(offset):跳过随机数生成器中的指定偏移量。
  • getrandbits(k):生成一个长度为 k 的随机二进制位序列。
  • sample(seq, k):从序列 seq 中随机选择 k 个元素,不重复。
  • randn(seed=None):生成一个服从标准正态分布的随机浮点数。
  • lognormal(mean, sigma, seed=None):生成一个对数正态分布的随机浮点数。
  • beta(a, b[, seed]):生成一个 Beta 分布的随机浮点数。
  • binomial(n, p[, seed]):生成一个二项分布的随机整数。
  • binomoulli(n[, seed]):生成一个伯努利分布的随机整数。
  • cbrt(x[, seed]):计算 x 的立方根。
  • combinations(n, k[, r]):计算从 n 个元素中选取 k 个元素的组合数,可选参数 r 表示组合的排列方式。
  • combinations_with_replacement(n, k[, r]):计算从 n 个元素中选取 k 个元素的组合数,其中每个元素可以被重复选择,可选参数 r 表示组合的排列方式。
  • cosh(x[, y]):计算 x 的双曲余弦,可选参数 y 表示与 x 的单位圆交点的横坐标或纵坐标。
  • erf(x[, y]):计算 x 的误差函数,可选参数 y 表示与 x 的单位圆交点的横坐标或纵坐标。
  • erfc(x[, y]):计算 1 - erf(x) 的值,即 x 的互补误差函数,可选参数 y 表示与 x 的单位圆交点的横坐标或纵坐标。
  • exp(x[, y]):计算 e 的 x 次幂,可选参数 y 表示与 x 的单位圆交点的横坐标或纵坐标。

random.random()

返回随机生成的一个浮点数,范围在[0,1)之间

import random

print(random.random())

# 0.9360100527747981

random.uniform(a, b)

返回随机生成的一个浮点数,范围在[a, b)之间

import random

print(random.uniform(1, 5))

# 3.1568793508338397

random.randint(a,b)

生成指定范围内的整数

import random

print(random.randint(1, 10))
print(random.randint(1, 10))
print(random.randint(1, 10))
print(random.randint(1, 10))

"""
3
9
6
5
"""

random.randrange([start],stop[,step])

用于从指定范围内按指定基数递增的集合中获取一个随机数。

生成一个a <= x < b之间的整数, c是步长

import random

for i in range(6):
    print(random.randrange(10))
    print(random.randrange(4, 10))
    print(random.randrange(4, 10, 3))
    print("-------------------------------")

"""
3
5
7
-------------------------------
4
5
7
-------------------------------
8
5
7
-------------------------------
9
6
7
-------------------------------
7
6
4
-------------------------------
8
4
4
-------------------------------
"""

random.choice(seq)

从指定的序列中获取一个随机元素.

random.choice(seq)从序列中获取一个随机元素,其原型为random.choice(sequence),参数sequence表示一个有序类型。这里说明一下,sequence在Python中不是一种特定的类型,而是泛指序列数据结构。列表,元组,字符串都属于sequence。

import random

print(random.choice('学习python'))  # 从字符串中随机取一个字符
print(random.choice(['good', 'hello', 'is', 'hi', 'boy']))  # 从list列表中随机取
print(random.choice(('str', 'tuple', 'list')))  # 从tuple元组中随机取

"""
习
hi
tuple
"""

random.shuffle(x[,random])

用于将一个列表中的元素打乱,随机排序

import random

p = ['hehe', 'xixi', 'heihei', 'haha', 'zhizhi', 'lala', 'momo..da']
random.shuffle(p)
print(p)

x = [1, 2, 3, 4, 5]
random.shuffle(x)
print(x)

"""
['haha', 'zhizhi', 'heihei', 'lala', 'hehe', 'xixi', 'momo..da']
[4, 5, 3, 2, 1]
"""

random.sample(sequence,k)

用于从指定序列中随机获取指定长度的片段,sample()函数不会修改原有序列。

import random

list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
slice = random.sample(list1, 5)
print(slice)

x = random.sample(range(0, 10), 5)
print(x, type(x))

Words = "AppleKMedoide"
print(random.sample(Words, 3))
print(random.sample(Words, 3))

"""
[9, 4, 3, 8, 1]
[0, 1, 5, 7, 6] <class 'list'>
['A', 'p', 'd']
['l', 'e', 'M']
"""

random.seed()

设定随机种子

seed()方法改变随机数生成器的种子,可以在调用其他随机模块函数之前调用此函数。

调用random.random()生成随机数时,每一次生成的数都是随机的。但是,预先使用random.seed(x)设定好种子之后,其中的x可以是任意数字,如10,
这个时候,先调用它的情况下,使用random()生成的随机数将会是同一个。

import random

# 没有设置seed的时候,random.randint(1,10),每次都是随机生成一个1到9之间的整数
for i in range(10):
    print(random.randint(1, 10))
    print(random.random())

print("------------------------------")
# 设置seed后,第一次生成的随机数,后面的生成的随机数也是一样的

for i in range(10):
    random.seed(1)
    print(random.randint(1, 10))
    print(random.random())

"""
5
0.48997461210066917
5
0.13410399104567527
9
0.010659226314677306
9
0.3889895853098817
6
0.8753961274173387
3
0.5658458502062649
6
0.7868733598877159
5
0.039470475186412446
1
0.1513398055644234
8
0.9507505213789474
------------------------------
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
3
0.5692038748222122
"""

jumpahead

random.jumpahead() 是 Python 中的一个随机数生成器方法,用于跳过随机数生成器中的指定偏移量。该方法接受一个整数参数 offset,表示要跳过的偏移量。

具体来说,random.jumpahead() 方法会修改随机数生成器的状态,使其从指定的偏移量开始生成随机数。这意味着在使用该方法之后的随机数生成器将不再是从 0 开始生成随机数,而是从指定的偏移量开始生成随机数。

需要注意的是,random.jumpahead() 方法只会跳过随机数生成器中的指定偏移量,并不会改变随机数生成器的状态。如果需要重置随机数生成器状态,可以使用 random.seed() 方法。

以下是 random.jumpahead() 方法的使用示例:

import random

# 生成一个随机数生成器
rand = random.Random()

# 跳过偏移量为 10 的随机数生成器
rand.jumpahead(10)

# 生成一个随机数
random_number = rand.randint(1, 100)
print(random_number)

在上面的示例中,我们首先导入了 random 模块,然后创建了一个随机数生成器对象 rand。接着,我们调用 jumpahead() 方法,将偏移量设置为 10,表示跳过 10 个随机数。最后,我们生成了一个 1 到 100 之间的随机整数,并将其打印出来。

需要注意的是,jumpahead() 方法只会跳过随机数生成器中的指定偏移量,并不会改变随机数生成器的状态。如果需要重置随机数生成器状态,可以使用 random.seed() 方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

士别三日,当挖目相待

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值