SVM为什么要将原问题转换为对偶问题?

博客探讨了SVM为何要从原始问题变为对偶问题求解。因有不等式约束方程,写成min max形式无法对x求导,需转换为max min形式。对偶变换需满足KKT条件,且对偶问题将约束转为等式约束,方便引入核函数,还改变了问题复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. SVM 为什么要从原始问题变为对偶问题来求解

  2. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解。而这种写成这种形式对x不能求导,这种形式只能对a求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了。而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问题等价的必要条件,当原问题是凸优化问题时,变为充要条件)。

  3. . 对偶问题将原始问题中的约束转为了对偶问题中的等式约束

  4. 方便核函数的引入

  5. 改变了问题的复杂度。由求特征向量w转化为求比例系数a,在原始问题下,求解的复杂度与样本的维度有关,即w的维度。在对偶问题下,只与样本数量有关。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值