为什么高斯核参数多

看到知乎上一个问题的回答下有『RBF核:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数。』
请问参数多主要体现在哪里呢?公式里面不就一个sigma平方吗?

『RBF核:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数。』这里的参数是模型的参数(系数)。

『请问参数多主要体现在哪里呢?公式里面不就一个sigma平方吗?』这里的参数是指模型的超参数。

我们调参的时候是调节的超参数。模型自己学习的是参数。

我们知道SVM的kernel function很多时候是用来升维的。

每个维度对应着一个参数(线性方程里每个变量前面的系数),升维之后,参数自然变多了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值