看到知乎上一个问题的回答下有『RBF核:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数。』
请问参数多主要体现在哪里呢?公式里面不就一个sigma平方吗?
『RBF核:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数。』这里的参数是模型的参数(系数)。
『请问参数多主要体现在哪里呢?公式里面不就一个sigma平方吗?』这里的参数是指模型的超参数。
我们调参的时候是调节的超参数。模型自己学习的是参数。
我们知道SVM的kernel function很多时候是用来升维的。
每个维度对应着一个参数(线性方程里每个变量前面的系数),升维之后,参数自然变多了。