机器学习常见分类

分类

监督学习:归类,预测,有标签

重要的监督学习的算法:
逻辑回归:用来分类,生成归属哪一类的可能性的值。
K近邻算法
线性回归
支持向量机
决策树和随机森林
神经网络

非监督学习

训练的数据没有标签,系统在没有老师的条件下进行学习。
重要算法:
聚类,可视化和降维,关联性规则学习
降维目的:简化数据同时不能失去大部分信息。做法之一是合并若干相关的特征。
例如:汽车的里程数和车龄高度相关,那么就可以把他们合成一个维度,表示汽车的磨损。这就叫特征工程。
除此之外还有一个重要的非监督学习任务是异常检测。
检测异常的信用卡转 账以防欺诈,检测制造缺陷,或者在训练之前自动从训练数据集去除异常值。异常检测的系 统使用正常值训练的,当它碰到一个新实例,它可以判断这个新实例是像正常值还是异常值
还有一个是关联规则学习:
挖掘大量数据来发现属性间的关系。例如,假设你拥有一个超市。在销售日志上运行关联规则,可能发现买了烧烤酱 和薯片的人也会买牛排。

半监督学习

一些算法可以处理部分带标签的训练数据,通常是大量不带标签的数据加上少部分带标签的数据。
比如 Google Photos,是半监督学习的好例子。一旦你上传了所有家庭相片,它就能自动识别相同的人 A 出现了相片 1、5、11 中,另一个人 B 出现在了相片 2、5、 7 中。这是算法的非监督部分(聚类)。现在系统需要的就是你告诉这两个人是谁。只要给每 个人一个标签,算法就可以命名每张照片中的每个人,特别适合搜索照片。
多数半监督学习的算法是非监督和监督算法的结合。

强化学习

首先学习系统对环境进行观察,选择和执行动作,获得奖励或者惩罚,然后找到哪个策略是最佳的学习方法,使得这个方法可以达到最大的奖励,进而执行哪种行动。

批量学习

用所有数据进行训练

在线学习

用数据持续的进行训练,可以一次一个或者几个实例(小批量),每个步骤都很快。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值