完全背包问题

问题描述以及样例:

题目链接:点击此处

有 NN 种物品和一个容量是 VV 的背包,每种物品都有无限件可用。

第 ii 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

AC代码:

 

#include <stdio.h>
#define N 1001
int max(int x,int y)
{
	int M;
	M=x>y ? x : y;
	return M;
}
int wei[N],val[N],f[N];
int main()
{
	int i, j, n, m;
	scanf("%d %d",&n,&m);
		for(i=0; i<n; i++)
			scanf("%d%d", &wei[i],&val[i]);//wei[i]为重量,val[i]为价值
		for(i=0; i<n; i++)
		{
			for(j=wei[i]; j<=m; j++)
				f[j] = max(f[j], f[j-wei[i]]+val[i]);
		}
		printf("%d\n",f[m]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w͏l͏j͏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值